Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322499802> ?p ?o ?g. }
- W4322499802 endingPage "427" @default.
- W4322499802 startingPage "415" @default.
- W4322499802 abstract "PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data." @default.
- W4322499802 created "2023-02-28" @default.
- W4322499802 creator A5005904075 @default.
- W4322499802 creator A5009283273 @default.
- W4322499802 creator A5033767796 @default.
- W4322499802 creator A5059563404 @default.
- W4322499802 date "2023-02-27" @default.
- W4322499802 modified "2023-09-26" @default.
- W4322499802 title "Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches" @default.
- W4322499802 cites W2003517818 @default.
- W4322499802 cites W2008596012 @default.
- W4322499802 cites W2048723200 @default.
- W4322499802 cites W2066387723 @default.
- W4322499802 cites W2082697581 @default.
- W4322499802 cites W2141403650 @default.
- W4322499802 cites W2299682948 @default.
- W4322499802 cites W2318698569 @default.
- W4322499802 cites W2465815876 @default.
- W4322499802 cites W2569446471 @default.
- W4322499802 cites W2620300958 @default.
- W4322499802 cites W2756116146 @default.
- W4322499802 cites W2767569083 @default.
- W4322499802 cites W2784031884 @default.
- W4322499802 cites W2790077761 @default.
- W4322499802 cites W2791728339 @default.
- W4322499802 cites W2791903781 @default.
- W4322499802 cites W2800898265 @default.
- W4322499802 cites W2883612219 @default.
- W4322499802 cites W2891181677 @default.
- W4322499802 cites W2899263525 @default.
- W4322499802 cites W2901899013 @default.
- W4322499802 cites W2905219620 @default.
- W4322499802 cites W2915204499 @default.
- W4322499802 cites W2953978338 @default.
- W4322499802 cites W3004301077 @default.
- W4322499802 cites W3032725109 @default.
- W4322499802 cites W3034149269 @default.
- W4322499802 cites W3077146447 @default.
- W4322499802 cites W3089651279 @default.
- W4322499802 cites W3106794929 @default.
- W4322499802 cites W3118803334 @default.
- W4322499802 cites W3129058702 @default.
- W4322499802 cites W3133659432 @default.
- W4322499802 cites W3149195499 @default.
- W4322499802 cites W3166851032 @default.
- W4322499802 cites W3173584553 @default.
- W4322499802 cites W3212494677 @default.
- W4322499802 cites W4296276681 @default.
- W4322499802 doi "https://doi.org/10.1080/19475683.2023.2183523" @default.
- W4322499802 hasPublicationYear "2023" @default.
- W4322499802 type Work @default.
- W4322499802 citedByCount "0" @default.
- W4322499802 crossrefType "journal-article" @default.
- W4322499802 hasAuthorship W4322499802A5005904075 @default.
- W4322499802 hasAuthorship W4322499802A5009283273 @default.
- W4322499802 hasAuthorship W4322499802A5033767796 @default.
- W4322499802 hasAuthorship W4322499802A5059563404 @default.
- W4322499802 hasBestOaLocation W43224998021 @default.
- W4322499802 hasConcept C105795698 @default.
- W4322499802 hasConcept C119857082 @default.
- W4322499802 hasConcept C127313418 @default.
- W4322499802 hasConcept C128990827 @default.
- W4322499802 hasConcept C136996986 @default.
- W4322499802 hasConcept C139945424 @default.
- W4322499802 hasConcept C153294291 @default.
- W4322499802 hasConcept C169258074 @default.
- W4322499802 hasConcept C18903297 @default.
- W4322499802 hasConcept C205649164 @default.
- W4322499802 hasConcept C24245907 @default.
- W4322499802 hasConcept C2779345167 @default.
- W4322499802 hasConcept C2780092901 @default.
- W4322499802 hasConcept C33923547 @default.
- W4322499802 hasConcept C39432304 @default.
- W4322499802 hasConcept C41008148 @default.
- W4322499802 hasConcept C48921125 @default.
- W4322499802 hasConcept C86803240 @default.
- W4322499802 hasConcept C91586092 @default.
- W4322499802 hasConceptScore W4322499802C105795698 @default.
- W4322499802 hasConceptScore W4322499802C119857082 @default.
- W4322499802 hasConceptScore W4322499802C127313418 @default.
- W4322499802 hasConceptScore W4322499802C128990827 @default.
- W4322499802 hasConceptScore W4322499802C136996986 @default.
- W4322499802 hasConceptScore W4322499802C139945424 @default.
- W4322499802 hasConceptScore W4322499802C153294291 @default.
- W4322499802 hasConceptScore W4322499802C169258074 @default.
- W4322499802 hasConceptScore W4322499802C18903297 @default.
- W4322499802 hasConceptScore W4322499802C205649164 @default.
- W4322499802 hasConceptScore W4322499802C24245907 @default.
- W4322499802 hasConceptScore W4322499802C2779345167 @default.
- W4322499802 hasConceptScore W4322499802C2780092901 @default.
- W4322499802 hasConceptScore W4322499802C33923547 @default.
- W4322499802 hasConceptScore W4322499802C39432304 @default.
- W4322499802 hasConceptScore W4322499802C41008148 @default.
- W4322499802 hasConceptScore W4322499802C48921125 @default.
- W4322499802 hasConceptScore W4322499802C86803240 @default.
- W4322499802 hasConceptScore W4322499802C91586092 @default.
- W4322499802 hasFunder F4320334771 @default.
- W4322499802 hasIssue "3" @default.