Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322500346> ?p ?o ?g. }
- W4322500346 endingPage "095440542311571" @default.
- W4322500346 startingPage "095440542311571" @default.
- W4322500346 abstract "The ball screw is an essential component in feed drive systems whose accuracy is seriously affected by machine tool internal and external heat sources. In this paper, a thermal error compensation method for ball screws is proposed based on the extreme gradient boosting (XGBoost) algorithm and thermal expansion principle. An XGBoost predictive model is established using the time series temperature data collected from thermal characteristics experiments. Furthermore, the predictive performance between the XGBoost algorithm and BP neural network is compared to validate the effectiveness and robustness of the proposed model. The results show that the XGBoost model has better predictive performance. Based on this, the temperature of key points on the ball screw can be obtained, and thermal error (which is useful for pulse compensation) is predicted. Simultaneously, thermal error compensation experiments are carried out on the ball screw bench with average results of more than 45%. The presented thermal error compensation method proved effective and can provide a foundation for precision machining." @default.
- W4322500346 created "2023-02-28" @default.
- W4322500346 creator A5005029405 @default.
- W4322500346 creator A5005635774 @default.
- W4322500346 creator A5015102287 @default.
- W4322500346 creator A5057947950 @default.
- W4322500346 creator A5065702664 @default.
- W4322500346 creator A5067211046 @default.
- W4322500346 date "2023-02-27" @default.
- W4322500346 modified "2023-09-26" @default.
- W4322500346 title "XGBoost-based thermal error prediction and compensation of ball screws" @default.
- W4322500346 cites W1998481880 @default.
- W4322500346 cites W2013045498 @default.
- W4322500346 cites W2016863706 @default.
- W4322500346 cites W2417514260 @default.
- W4322500346 cites W2568038682 @default.
- W4322500346 cites W2736071659 @default.
- W4322500346 cites W2790671767 @default.
- W4322500346 cites W2794357443 @default.
- W4322500346 cites W2954482899 @default.
- W4322500346 cites W2957648550 @default.
- W4322500346 cites W2966571940 @default.
- W4322500346 cites W2969213245 @default.
- W4322500346 cites W2972844028 @default.
- W4322500346 cites W2977197336 @default.
- W4322500346 cites W2989844916 @default.
- W4322500346 cites W2996165834 @default.
- W4322500346 cites W3001657166 @default.
- W4322500346 cites W3017167603 @default.
- W4322500346 cites W3027864274 @default.
- W4322500346 cites W3036412491 @default.
- W4322500346 cites W3037271906 @default.
- W4322500346 cites W3101507423 @default.
- W4322500346 cites W3107415120 @default.
- W4322500346 cites W3129078946 @default.
- W4322500346 cites W3129161421 @default.
- W4322500346 cites W3136808909 @default.
- W4322500346 cites W3142312911 @default.
- W4322500346 cites W3174936338 @default.
- W4322500346 cites W3185945765 @default.
- W4322500346 cites W3190032105 @default.
- W4322500346 cites W3198955447 @default.
- W4322500346 cites W3199617042 @default.
- W4322500346 cites W3209939270 @default.
- W4322500346 cites W4205514505 @default.
- W4322500346 cites W4221054330 @default.
- W4322500346 cites W4226297793 @default.
- W4322500346 cites W4248861137 @default.
- W4322500346 cites W4256143621 @default.
- W4322500346 cites W4281771225 @default.
- W4322500346 doi "https://doi.org/10.1177/09544054231157110" @default.
- W4322500346 hasPublicationYear "2023" @default.
- W4322500346 type Work @default.
- W4322500346 citedByCount "0" @default.
- W4322500346 crossrefType "journal-article" @default.
- W4322500346 hasAuthorship W4322500346A5005029405 @default.
- W4322500346 hasAuthorship W4322500346A5005635774 @default.
- W4322500346 hasAuthorship W4322500346A5015102287 @default.
- W4322500346 hasAuthorship W4322500346A5057947950 @default.
- W4322500346 hasAuthorship W4322500346A5065702664 @default.
- W4322500346 hasAuthorship W4322500346A5067211046 @default.
- W4322500346 hasConcept C104317684 @default.
- W4322500346 hasConcept C11171543 @default.
- W4322500346 hasConcept C121332964 @default.
- W4322500346 hasConcept C122041747 @default.
- W4322500346 hasConcept C127413603 @default.
- W4322500346 hasConcept C153294291 @default.
- W4322500346 hasConcept C154945302 @default.
- W4322500346 hasConcept C15744967 @default.
- W4322500346 hasConcept C185592680 @default.
- W4322500346 hasConcept C204530211 @default.
- W4322500346 hasConcept C206391251 @default.
- W4322500346 hasConcept C2524010 @default.
- W4322500346 hasConcept C2775924081 @default.
- W4322500346 hasConcept C2777606094 @default.
- W4322500346 hasConcept C2780023022 @default.
- W4322500346 hasConcept C33923547 @default.
- W4322500346 hasConcept C41008148 @default.
- W4322500346 hasConcept C47446073 @default.
- W4322500346 hasConcept C50644808 @default.
- W4322500346 hasConcept C523214423 @default.
- W4322500346 hasConcept C55493867 @default.
- W4322500346 hasConcept C5941749 @default.
- W4322500346 hasConcept C63479239 @default.
- W4322500346 hasConcept C78519656 @default.
- W4322500346 hasConceptScore W4322500346C104317684 @default.
- W4322500346 hasConceptScore W4322500346C11171543 @default.
- W4322500346 hasConceptScore W4322500346C121332964 @default.
- W4322500346 hasConceptScore W4322500346C122041747 @default.
- W4322500346 hasConceptScore W4322500346C127413603 @default.
- W4322500346 hasConceptScore W4322500346C153294291 @default.
- W4322500346 hasConceptScore W4322500346C154945302 @default.
- W4322500346 hasConceptScore W4322500346C15744967 @default.
- W4322500346 hasConceptScore W4322500346C185592680 @default.
- W4322500346 hasConceptScore W4322500346C204530211 @default.
- W4322500346 hasConceptScore W4322500346C206391251 @default.
- W4322500346 hasConceptScore W4322500346C2524010 @default.
- W4322500346 hasConceptScore W4322500346C2775924081 @default.