Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322502022> ?p ?o ?g. }
- W4322502022 endingPage "4530" @default.
- W4322502022 startingPage "4530" @default.
- W4322502022 abstract "Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001)." @default.
- W4322502022 created "2023-02-28" @default.
- W4322502022 creator A5004276854 @default.
- W4322502022 creator A5019838414 @default.
- W4322502022 creator A5049875480 @default.
- W4322502022 creator A5068621990 @default.
- W4322502022 creator A5074346938 @default.
- W4322502022 date "2023-02-25" @default.
- W4322502022 modified "2023-10-09" @default.
- W4322502022 title "Genetic Adaptation of Siberian Larch (Larix sibirica Ledeb.) to High Altitudes" @default.
- W4322502022 cites W1549716303 @default.
- W4322502022 cites W1581676772 @default.
- W4322502022 cites W1852163795 @default.
- W4322502022 cites W1990074132 @default.
- W4322502022 cites W1997476591 @default.
- W4322502022 cites W2004937447 @default.
- W4322502022 cites W2016603972 @default.
- W4322502022 cites W2019832585 @default.
- W4322502022 cites W2040057823 @default.
- W4322502022 cites W2069666433 @default.
- W4322502022 cites W2070287693 @default.
- W4322502022 cites W2079071599 @default.
- W4322502022 cites W2083254305 @default.
- W4322502022 cites W2092060379 @default.
- W4322502022 cites W2099447506 @default.
- W4322502022 cites W2103184791 @default.
- W4322502022 cites W2108524369 @default.
- W4322502022 cites W2110035718 @default.
- W4322502022 cites W2112476384 @default.
- W4322502022 cites W2127597920 @default.
- W4322502022 cites W2130517250 @default.
- W4322502022 cites W2131271579 @default.
- W4322502022 cites W2134611522 @default.
- W4322502022 cites W2146290595 @default.
- W4322502022 cites W2147299002 @default.
- W4322502022 cites W2149752076 @default.
- W4322502022 cites W2157310847 @default.
- W4322502022 cites W2161184021 @default.
- W4322502022 cites W2161339576 @default.
- W4322502022 cites W2162157671 @default.
- W4322502022 cites W2163472079 @default.
- W4322502022 cites W2163980692 @default.
- W4322502022 cites W2166937116 @default.
- W4322502022 cites W2169067195 @default.
- W4322502022 cites W2170551349 @default.
- W4322502022 cites W2252933836 @default.
- W4322502022 cites W2412288472 @default.
- W4322502022 cites W2432815617 @default.
- W4322502022 cites W2473818600 @default.
- W4322502022 cites W2487751027 @default.
- W4322502022 cites W2614464134 @default.
- W4322502022 cites W2737873067 @default.
- W4322502022 cites W2802494562 @default.
- W4322502022 cites W281801582 @default.
- W4322502022 cites W2911192550 @default.
- W4322502022 cites W2914257352 @default.
- W4322502022 cites W3019415451 @default.
- W4322502022 cites W3045866659 @default.
- W4322502022 cites W3089623388 @default.
- W4322502022 cites W3094967361 @default.
- W4322502022 cites W3131055609 @default.
- W4322502022 cites W4213450254 @default.
- W4322502022 cites W4214701678 @default.
- W4322502022 cites W4223552703 @default.
- W4322502022 cites W4225283372 @default.
- W4322502022 cites W4233572931 @default.
- W4322502022 cites W4233657210 @default.
- W4322502022 cites W4255659575 @default.
- W4322502022 cites W4292451841 @default.
- W4322502022 cites W4293051598 @default.
- W4322502022 doi "https://doi.org/10.3390/ijms24054530" @default.
- W4322502022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36901960" @default.
- W4322502022 hasPublicationYear "2023" @default.
- W4322502022 type Work @default.
- W4322502022 citedByCount "2" @default.
- W4322502022 countsByYear W43225020222023 @default.
- W4322502022 crossrefType "journal-article" @default.
- W4322502022 hasAuthorship W4322502022A5004276854 @default.
- W4322502022 hasAuthorship W4322502022A5019838414 @default.
- W4322502022 hasAuthorship W4322502022A5049875480 @default.
- W4322502022 hasAuthorship W4322502022A5068621990 @default.
- W4322502022 hasAuthorship W4322502022A5074346938 @default.
- W4322502022 hasBestOaLocation W43225020221 @default.
- W4322502022 hasConcept C104317684 @default.
- W4322502022 hasConcept C135763542 @default.
- W4322502022 hasConcept C139807058 @default.
- W4322502022 hasConcept C144024400 @default.
- W4322502022 hasConcept C149923435 @default.
- W4322502022 hasConcept C153209595 @default.
- W4322502022 hasConcept C169760540 @default.
- W4322502022 hasConcept C18903297 @default.
- W4322502022 hasConcept C2524010 @default.
- W4322502022 hasConcept C2778551664 @default.
- W4322502022 hasConcept C2780354846 @default.
- W4322502022 hasConcept C2908647359 @default.
- W4322502022 hasConcept C33923547 @default.
- W4322502022 hasConcept C54355233 @default.
- W4322502022 hasConcept C6350597 @default.