Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322503786> ?p ?o ?g. }
- W4322503786 endingPage "574" @default.
- W4322503786 startingPage "574" @default.
- W4322503786 abstract "The integration of microarray technologies and machine learning methods has become popular in predicting the pathological condition of diseases and discovering risk genes. Traditional microarray analysis considers pathways as a simple gene set, treating all genes in the pathway identically while ignoring the pathway network’s structure information. This study proposed an entropy-based directed random walk (e-DRW) method to infer pathway activities. Two enhancements from the conventional DRW were conducted, which are (1) to increase the coverage of human pathway information by constructing two inputting networks for pathway activity inference, and (2) to enhance the gene-weighting method in DRW by incorporating correlation coefficient values and t-test statistic scores. To test the objectives, gene expression datasets were used as input datasets while the pathway datasets were used as reference datasets to build two directed graphs. The within-dataset experiments indicated that e-DRW method demonstrated robust and superior performance in terms of classification accuracy and robustness of the predicted risk-active pathways compared to the other methods. In conclusion, the results revealed that e-DRW not only improved the prediction performance, but also effectively extracted topologically important pathways and genes that were specifically related to the corresponding cancer types." @default.
- W4322503786 created "2023-02-28" @default.
- W4322503786 creator A5025957697 @default.
- W4322503786 creator A5028915945 @default.
- W4322503786 creator A5029675423 @default.
- W4322503786 creator A5049485265 @default.
- W4322503786 creator A5058747281 @default.
- W4322503786 creator A5059360335 @default.
- W4322503786 creator A5064913575 @default.
- W4322503786 creator A5076207669 @default.
- W4322503786 date "2023-02-24" @default.
- W4322503786 modified "2023-10-17" @default.
- W4322503786 title "An Entropy-Based Directed Random Walk for Cancer Classification Using Gene Expression Data Based on Bi-Random Walk on Two Separated Networks" @default.
- W4322503786 cites W1512042133 @default.
- W4322503786 cites W1600844927 @default.
- W4322503786 cites W1607267312 @default.
- W4322503786 cites W1620997626 @default.
- W4322503786 cites W1675596428 @default.
- W4322503786 cites W174237305 @default.
- W4322503786 cites W1862546551 @default.
- W4322503786 cites W1906461790 @default.
- W4322503786 cites W1978545732 @default.
- W4322503786 cites W1992045522 @default.
- W4322503786 cites W2025657174 @default.
- W4322503786 cites W2030029945 @default.
- W4322503786 cites W2033072655 @default.
- W4322503786 cites W2040263952 @default.
- W4322503786 cites W2046759180 @default.
- W4322503786 cites W2052196460 @default.
- W4322503786 cites W2058237157 @default.
- W4322503786 cites W2058451329 @default.
- W4322503786 cites W2096766502 @default.
- W4322503786 cites W2100628741 @default.
- W4322503786 cites W2100701799 @default.
- W4322503786 cites W2112811019 @default.
- W4322503786 cites W2114894903 @default.
- W4322503786 cites W2115580179 @default.
- W4322503786 cites W2128814129 @default.
- W4322503786 cites W2134555649 @default.
- W4322503786 cites W2135143152 @default.
- W4322503786 cites W2136316164 @default.
- W4322503786 cites W2136549265 @default.
- W4322503786 cites W2140416663 @default.
- W4322503786 cites W2140469676 @default.
- W4322503786 cites W2148590574 @default.
- W4322503786 cites W2150026213 @default.
- W4322503786 cites W2152725087 @default.
- W4322503786 cites W2158384363 @default.
- W4322503786 cites W2159478099 @default.
- W4322503786 cites W2159482845 @default.
- W4322503786 cites W2167971649 @default.
- W4322503786 cites W2183659962 @default.
- W4322503786 cites W2234559012 @default.
- W4322503786 cites W2404071591 @default.
- W4322503786 cites W2470659683 @default.
- W4322503786 cites W2552017669 @default.
- W4322503786 cites W2561631604 @default.
- W4322503786 cites W2767219591 @default.
- W4322503786 cites W2769019754 @default.
- W4322503786 cites W2800103855 @default.
- W4322503786 cites W2800663365 @default.
- W4322503786 cites W2901812023 @default.
- W4322503786 cites W2919429412 @default.
- W4322503786 cites W2942746533 @default.
- W4322503786 cites W2944851004 @default.
- W4322503786 cites W2945020349 @default.
- W4322503786 cites W3005777077 @default.
- W4322503786 cites W3029182650 @default.
- W4322503786 cites W3051621508 @default.
- W4322503786 cites W3103950135 @default.
- W4322503786 cites W3174892273 @default.
- W4322503786 cites W4294216483 @default.
- W4322503786 cites W4306315825 @default.
- W4322503786 cites W4322503786 @default.
- W4322503786 cites W95868183 @default.
- W4322503786 doi "https://doi.org/10.3390/genes14030574" @default.
- W4322503786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980844" @default.
- W4322503786 hasPublicationYear "2023" @default.
- W4322503786 type Work @default.
- W4322503786 citedByCount "1" @default.
- W4322503786 countsByYear W43225037862023 @default.
- W4322503786 crossrefType "journal-article" @default.
- W4322503786 hasAuthorship W4322503786A5025957697 @default.
- W4322503786 hasAuthorship W4322503786A5028915945 @default.
- W4322503786 hasAuthorship W4322503786A5029675423 @default.
- W4322503786 hasAuthorship W4322503786A5049485265 @default.
- W4322503786 hasAuthorship W4322503786A5058747281 @default.
- W4322503786 hasAuthorship W4322503786A5059360335 @default.
- W4322503786 hasAuthorship W4322503786A5064913575 @default.
- W4322503786 hasAuthorship W4322503786A5076207669 @default.
- W4322503786 hasBestOaLocation W43225037861 @default.
- W4322503786 hasConcept C104317684 @default.
- W4322503786 hasConcept C105795698 @default.
- W4322503786 hasConcept C106301342 @default.
- W4322503786 hasConcept C121194460 @default.
- W4322503786 hasConcept C121332964 @default.
- W4322503786 hasConcept C124101348 @default.
- W4322503786 hasConcept C126838900 @default.