Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322504264> ?p ?o ?g. }
- W4322504264 endingPage "887" @default.
- W4322504264 startingPage "887" @default.
- W4322504264 abstract "The quality of precipitation forecasting is critical for more accurate hydrological forecasts, especially flood forecasting. The use of numerical weather prediction (NWP) models has attracted much attention due to their impact on increasing the flood lead time. It is vital to post-process raw precipitation forecasts because of their significant bias when they feed hydrological models. In this research, ensemble precipitation forecasts (EPFs) of three NWP models (National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) (Exeter, UK), and Korea Meteorological Administration (KMA) (SEOUL, REPUBLIC OF KOREA)) were investigated for six historical storms leading to heavy floods in the Dez basin, Iran. To post-process EPFs, the raw output of every single NWP model was corrected using regression models. Then, two proposed models, the Group Method of Data Handling (GMDH) deep learning model and the Weighted Average–Weighted Least Square Regression (WA-WLSR) model, were employed to construct a multi-model ensemble (MME) system. The ensemble reservoir inflow was simulated using the HBV hydrological model under the two modeling approaches involving deterministic forecasts (simulation using observed precipitation data as input) and ensemble forecasts (simulation using post-processed EPFs as input). The results demonstrated that both GMDH and WA-WLSR models had a positive impact on improving the forecast skill of the NWP models, but more accurate results were obtained by the WA-WLSR model. Ensemble forecasts outperformed coupled atmospheric–hydrological modeling in comparison with deterministic forecasts to simulate inflow hydrographs. Our proposed approach lends itself to quantifying uncertainty of ensemble forecasts in hydrometeorological the models, making it possible to have more reliable strategies for extreme-weather event management." @default.
- W4322504264 created "2023-02-28" @default.
- W4322504264 creator A5004680876 @default.
- W4322504264 creator A5007022160 @default.
- W4322504264 creator A5025016867 @default.
- W4322504264 creator A5062834756 @default.
- W4322504264 creator A5078216204 @default.
- W4322504264 creator A5079635378 @default.
- W4322504264 creator A5089510337 @default.
- W4322504264 date "2023-02-25" @default.
- W4322504264 modified "2023-10-01" @default.
- W4322504264 title "Forecasting the Ensemble Hydrograph of the Reservoir Inflow based on Post-Processed TIGGE Precipitation Forecasts in a Coupled Atmospheric-Hydrological System" @default.
- W4322504264 cites W1845589823 @default.
- W4322504264 cites W1970288894 @default.
- W4322504264 cites W1989586280 @default.
- W4322504264 cites W1992962241 @default.
- W4322504264 cites W1993642620 @default.
- W4322504264 cites W1994864367 @default.
- W4322504264 cites W1999733221 @default.
- W4322504264 cites W2000527612 @default.
- W4322504264 cites W2009673657 @default.
- W4322504264 cites W2012742552 @default.
- W4322504264 cites W2022747013 @default.
- W4322504264 cites W2024158328 @default.
- W4322504264 cites W2031382254 @default.
- W4322504264 cites W2033904036 @default.
- W4322504264 cites W2046453991 @default.
- W4322504264 cites W2062502056 @default.
- W4322504264 cites W2062539151 @default.
- W4322504264 cites W2064908124 @default.
- W4322504264 cites W2065168131 @default.
- W4322504264 cites W2078499808 @default.
- W4322504264 cites W2080545455 @default.
- W4322504264 cites W2086201173 @default.
- W4322504264 cites W2093776584 @default.
- W4322504264 cites W2105079367 @default.
- W4322504264 cites W2120933360 @default.
- W4322504264 cites W2234005067 @default.
- W4322504264 cites W2276342788 @default.
- W4322504264 cites W2328399833 @default.
- W4322504264 cites W2343725866 @default.
- W4322504264 cites W2398140201 @default.
- W4322504264 cites W2465145120 @default.
- W4322504264 cites W2562031897 @default.
- W4322504264 cites W2772453098 @default.
- W4322504264 cites W2776134521 @default.
- W4322504264 cites W2802881357 @default.
- W4322504264 cites W2803519132 @default.
- W4322504264 cites W2900472058 @default.
- W4322504264 cites W2903237317 @default.
- W4322504264 cites W2911919625 @default.
- W4322504264 cites W2921653495 @default.
- W4322504264 cites W2922558069 @default.
- W4322504264 cites W2923683857 @default.
- W4322504264 cites W2945697349 @default.
- W4322504264 cites W2945804854 @default.
- W4322504264 cites W2953624046 @default.
- W4322504264 cites W2965039846 @default.
- W4322504264 cites W2966969919 @default.
- W4322504264 cites W2981471614 @default.
- W4322504264 cites W3000417490 @default.
- W4322504264 cites W3014959983 @default.
- W4322504264 cites W3016435373 @default.
- W4322504264 cites W3020381798 @default.
- W4322504264 cites W3033679222 @default.
- W4322504264 cites W3045144178 @default.
- W4322504264 cites W3076896779 @default.
- W4322504264 cites W3095828584 @default.
- W4322504264 cites W3120371744 @default.
- W4322504264 cites W3161807708 @default.
- W4322504264 cites W3163202199 @default.
- W4322504264 cites W3181776601 @default.
- W4322504264 cites W3197364266 @default.
- W4322504264 cites W4221051225 @default.
- W4322504264 cites W4229441427 @default.
- W4322504264 cites W4290072744 @default.
- W4322504264 cites W4293724423 @default.
- W4322504264 cites W66107645 @default.
- W4322504264 doi "https://doi.org/10.3390/w15050887" @default.
- W4322504264 hasPublicationYear "2023" @default.
- W4322504264 type Work @default.
- W4322504264 citedByCount "0" @default.
- W4322504264 crossrefType "journal-article" @default.
- W4322504264 hasAuthorship W4322504264A5004680876 @default.
- W4322504264 hasAuthorship W4322504264A5007022160 @default.
- W4322504264 hasAuthorship W4322504264A5025016867 @default.
- W4322504264 hasAuthorship W4322504264A5062834756 @default.
- W4322504264 hasAuthorship W4322504264A5078216204 @default.
- W4322504264 hasAuthorship W4322504264A5079635378 @default.
- W4322504264 hasAuthorship W4322504264A5089510337 @default.
- W4322504264 hasBestOaLocation W43225042641 @default.
- W4322504264 hasConcept C100725284 @default.
- W4322504264 hasConcept C107054158 @default.
- W4322504264 hasConcept C119898033 @default.
- W4322504264 hasConcept C126197015 @default.
- W4322504264 hasConcept C127313418 @default.
- W4322504264 hasConcept C140178040 @default.
- W4322504264 hasConcept C147947694 @default.