Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322622028> ?p ?o ?g. }
- W4322622028 endingPage "18" @default.
- W4322622028 startingPage "1" @default.
- W4322622028 abstract "Recently, intrusion detection systems (IDS) have become an essential part of most organisations’ security architecture due to the rise in frequency and severity of network attacks. To identify a security breach, the target machine or network must be watched and analysed for signs of an intrusion. It is defined as efforts to compromise the confidentiality, integrity, or availability of a computer or network or to circumvent its security mechanisms. Several IDS have been proposed in the literature to efficiently detect such attempts exploiting different characteristics of cyberattacks. These systems can provide with timely sensing the network intrusions and, subsequently, notifying the manager or the responsible person in an organisation. Important actions are then carried out to reduce the degree of damage caused by the intrusion. Organisations use such techniques to defend their systems from the network disconnectivity and increase reliance on the information systems by employing intrusion detection. This paper presents a detailed summary of recent advances in IDS from the literature. Nevertheless, a review of future research directions for detecting malicious operations and launching different attacks on systems is discussed and highlighted. Furthermore, this study presents detailed description of well-known publicly available datasets and a variety of strategies developed for dealing with intrusions." @default.
- W4322622028 created "2023-03-01" @default.
- W4322622028 creator A5048418386 @default.
- W4322622028 creator A5079949536 @default.
- W4322622028 creator A5080291510 @default.
- W4322622028 date "2023-02-28" @default.
- W4322622028 modified "2023-10-14" @default.
- W4322622028 title "A Systematic and Comprehensive Survey of Recent Advances in Intrusion Detection Systems Using Machine Learning: Deep Learning, Datasets, and Attack Taxonomy" @default.
- W4322622028 cites W1772700132 @default.
- W4322622028 cites W1871385855 @default.
- W4322622028 cites W1971585691 @default.
- W4322622028 cites W1977366836 @default.
- W4322622028 cites W2051627118 @default.
- W4322622028 cites W2065523140 @default.
- W4322622028 cites W2093171578 @default.
- W4322622028 cites W2110106247 @default.
- W4322622028 cites W2119046642 @default.
- W4322622028 cites W2122857001 @default.
- W4322622028 cites W2245789645 @default.
- W4322622028 cites W2278186031 @default.
- W4322622028 cites W2342408547 @default.
- W4322622028 cites W2344887935 @default.
- W4322622028 cites W2573324059 @default.
- W4322622028 cites W2616536158 @default.
- W4322622028 cites W2732383329 @default.
- W4322622028 cites W2744338514 @default.
- W4322622028 cites W2762776925 @default.
- W4322622028 cites W2783047089 @default.
- W4322622028 cites W2783047817 @default.
- W4322622028 cites W2789876780 @default.
- W4322622028 cites W2790100928 @default.
- W4322622028 cites W2798336999 @default.
- W4322622028 cites W2801256139 @default.
- W4322622028 cites W2804368608 @default.
- W4322622028 cites W2884516347 @default.
- W4322622028 cites W2889109290 @default.
- W4322622028 cites W2889165715 @default.
- W4322622028 cites W2913330314 @default.
- W4322622028 cites W2914715487 @default.
- W4322622028 cites W2918854598 @default.
- W4322622028 cites W2928016897 @default.
- W4322622028 cites W2929049293 @default.
- W4322622028 cites W2944851425 @default.
- W4322622028 cites W2945801048 @default.
- W4322622028 cites W2947802941 @default.
- W4322622028 cites W2954144630 @default.
- W4322622028 cites W2958285686 @default.
- W4322622028 cites W2966972068 @default.
- W4322622028 cites W2981025625 @default.
- W4322622028 cites W2982207148 @default.
- W4322622028 cites W2984419450 @default.
- W4322622028 cites W3005630930 @default.
- W4322622028 cites W3007447684 @default.
- W4322622028 cites W3025093231 @default.
- W4322622028 cites W3028817027 @default.
- W4322622028 cites W3080286822 @default.
- W4322622028 cites W3087344973 @default.
- W4322622028 cites W3087836803 @default.
- W4322622028 cites W3092688604 @default.
- W4322622028 cites W3093410479 @default.
- W4322622028 cites W3093621053 @default.
- W4322622028 cites W3104092367 @default.
- W4322622028 cites W3106709164 @default.
- W4322622028 cites W3108615370 @default.
- W4322622028 cites W3108630703 @default.
- W4322622028 cites W3112228402 @default.
- W4322622028 cites W3118241656 @default.
- W4322622028 cites W3126140213 @default.
- W4322622028 cites W3126814579 @default.
- W4322622028 cites W3128607711 @default.
- W4322622028 cites W3139008799 @default.
- W4322622028 cites W3157189912 @default.
- W4322622028 cites W3160220648 @default.
- W4322622028 cites W3162784934 @default.
- W4322622028 cites W3162956350 @default.
- W4322622028 cites W3186172578 @default.
- W4322622028 cites W3195631217 @default.
- W4322622028 cites W3202417356 @default.
- W4322622028 cites W3210092962 @default.
- W4322622028 cites W3210577968 @default.
- W4322622028 cites W3215963980 @default.
- W4322622028 cites W4205373213 @default.
- W4322622028 cites W4206266129 @default.
- W4322622028 cites W4210839662 @default.
- W4322622028 cites W4220898392 @default.
- W4322622028 cites W4225305765 @default.
- W4322622028 cites W4282978356 @default.
- W4322622028 doi "https://doi.org/10.1155/2023/6048087" @default.
- W4322622028 hasPublicationYear "2023" @default.
- W4322622028 type Work @default.
- W4322622028 citedByCount "1" @default.
- W4322622028 countsByYear W43226220282023 @default.
- W4322622028 crossrefType "journal-article" @default.
- W4322622028 hasAuthorship W4322622028A5048418386 @default.
- W4322622028 hasAuthorship W4322622028A5079949536 @default.
- W4322622028 hasAuthorship W4322622028A5080291510 @default.
- W4322622028 hasBestOaLocation W43226220281 @default.
- W4322622028 hasConcept C112930515 @default.