Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322623400> ?p ?o ?g. }
- W4322623400 abstract "Abstract In recent years, deep learning has been extensively used for ionospheric total electron content (TEC) prediction, and many models can yield promising prediction results, particularly under quiet conditions. Owing to the ionosphere's intricate and dramatic changes during geomagnetic storms, the high‐reliable prediction of the storm‐time ionospheric TEC remains a challenging problem. In this study, we developed a new deep learning‐based multi‐model ensemble method (DLMEM) to forecast geomagnetic storm‐time ionospheric TEC that combines the Random Forest (RF) model, the Extreme Gradient Boosting (XGBoost) algorithm, and the Gated Recurrent Unit (GRU) network with the attention mechanism. Seven features in 170 geomagnetic storm events, including the three components Bx , By and Bz of interplanetary magnetic field (IMF), the Kp and Dst indices of geomagnetic activity data, the F 10.7 index of solar activity data and global TEC data, were used for modeling. The test set results showed that the DLMEM model can reduce the root mean square errors (RMSE) by an average of 43.6% in comparison to our previously presented model Ion‐LSTM, especially during the recovery period of geomagnetic storms. Furthermore, compared to Ion‐LSTM, the RMSE values of the low‐, middle‐ and high‐latitude single‐station forecast TEC can be greatly decreased by 33%, 53% and 59%, respectively. It was shown that the new model allows for more precise short‐term global ionospheric forecasting during geomagnetic storms, enabling real‐time monitoring of ionospheric changes." @default.
- W4322623400 created "2023-03-01" @default.
- W4322623400 creator A5002550938 @default.
- W4322623400 creator A5013881064 @default.
- W4322623400 creator A5015764816 @default.
- W4322623400 creator A5024232795 @default.
- W4322623400 creator A5025655145 @default.
- W4322623400 creator A5040185858 @default.
- W4322623400 date "2023-02-28" @default.
- W4322623400 modified "2023-10-01" @default.
- W4322623400 title "Global Ionospheric TEC Forecasting for Geomagnetic Storm Time Using a Deep Learning‐Based Multi‐Model Ensemble Method" @default.
- W4322623400 cites W1649810948 @default.
- W4322623400 cites W2028549540 @default.
- W4322623400 cites W2030957302 @default.
- W4322623400 cites W2064675550 @default.
- W4322623400 cites W2071107617 @default.
- W4322623400 cites W2072185069 @default.
- W4322623400 cites W20962237 @default.
- W4322623400 cites W2110485445 @default.
- W4322623400 cites W2157331557 @default.
- W4322623400 cites W2605516844 @default.
- W4322623400 cites W2789758093 @default.
- W4322623400 cites W2897473609 @default.
- W4322623400 cites W2919115771 @default.
- W4322623400 cites W2920947047 @default.
- W4322623400 cites W3102476541 @default.
- W4322623400 cites W3149839747 @default.
- W4322623400 cites W3207789037 @default.
- W4322623400 cites W4220985306 @default.
- W4322623400 cites W4224235993 @default.
- W4322623400 cites W4225261029 @default.
- W4322623400 cites W4232478844 @default.
- W4322623400 cites W4284976325 @default.
- W4322623400 doi "https://doi.org/10.1029/2022sw003231" @default.
- W4322623400 hasPublicationYear "2023" @default.
- W4322623400 type Work @default.
- W4322623400 citedByCount "3" @default.
- W4322623400 countsByYear W43226234002023 @default.
- W4322623400 crossrefType "journal-article" @default.
- W4322623400 hasAuthorship W4322623400A5002550938 @default.
- W4322623400 hasAuthorship W4322623400A5013881064 @default.
- W4322623400 hasAuthorship W4322623400A5015764816 @default.
- W4322623400 hasAuthorship W4322623400A5024232795 @default.
- W4322623400 hasAuthorship W4322623400A5025655145 @default.
- W4322623400 hasAuthorship W4322623400A5040185858 @default.
- W4322623400 hasBestOaLocation W43226234001 @default.
- W4322623400 hasConcept C105306849 @default.
- W4322623400 hasConcept C105795698 @default.
- W4322623400 hasConcept C115260700 @default.
- W4322623400 hasConcept C116403925 @default.
- W4322623400 hasConcept C121332964 @default.
- W4322623400 hasConcept C127313418 @default.
- W4322623400 hasConcept C139945424 @default.
- W4322623400 hasConcept C151325931 @default.
- W4322623400 hasConcept C153294291 @default.
- W4322623400 hasConcept C165391973 @default.
- W4322623400 hasConcept C170641098 @default.
- W4322623400 hasConcept C176379880 @default.
- W4322623400 hasConcept C199635899 @default.
- W4322623400 hasConcept C205649164 @default.
- W4322623400 hasConcept C33923547 @default.
- W4322623400 hasConcept C39432304 @default.
- W4322623400 hasConcept C62520636 @default.
- W4322623400 hasConcept C8058405 @default.
- W4322623400 hasConceptScore W4322623400C105306849 @default.
- W4322623400 hasConceptScore W4322623400C105795698 @default.
- W4322623400 hasConceptScore W4322623400C115260700 @default.
- W4322623400 hasConceptScore W4322623400C116403925 @default.
- W4322623400 hasConceptScore W4322623400C121332964 @default.
- W4322623400 hasConceptScore W4322623400C127313418 @default.
- W4322623400 hasConceptScore W4322623400C139945424 @default.
- W4322623400 hasConceptScore W4322623400C151325931 @default.
- W4322623400 hasConceptScore W4322623400C153294291 @default.
- W4322623400 hasConceptScore W4322623400C165391973 @default.
- W4322623400 hasConceptScore W4322623400C170641098 @default.
- W4322623400 hasConceptScore W4322623400C176379880 @default.
- W4322623400 hasConceptScore W4322623400C199635899 @default.
- W4322623400 hasConceptScore W4322623400C205649164 @default.
- W4322623400 hasConceptScore W4322623400C33923547 @default.
- W4322623400 hasConceptScore W4322623400C39432304 @default.
- W4322623400 hasConceptScore W4322623400C62520636 @default.
- W4322623400 hasConceptScore W4322623400C8058405 @default.
- W4322623400 hasFunder F4320321001 @default.
- W4322623400 hasIssue "3" @default.
- W4322623400 hasLocation W43226234001 @default.
- W4322623400 hasOpenAccess W4322623400 @default.
- W4322623400 hasPrimaryLocation W43226234001 @default.
- W4322623400 hasRelatedWork W1574035665 @default.
- W4322623400 hasRelatedWork W2071423018 @default.
- W4322623400 hasRelatedWork W2107259236 @default.
- W4322623400 hasRelatedWork W2159166122 @default.
- W4322623400 hasRelatedWork W2567440351 @default.
- W4322623400 hasRelatedWork W2968868265 @default.
- W4322623400 hasRelatedWork W3014544191 @default.
- W4322623400 hasRelatedWork W3047275109 @default.
- W4322623400 hasRelatedWork W3192542999 @default.
- W4322623400 hasRelatedWork W4379980816 @default.
- W4322623400 hasVolume "21" @default.
- W4322623400 isParatext "false" @default.
- W4322623400 isRetracted "false" @default.