Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322629693> ?p ?o ?g. }
- W4322629693 endingPage "2640" @default.
- W4322629693 startingPage "2640" @default.
- W4322629693 abstract "As a fundamental but difficult topic in computer vision, 3D object segmentation has various applications in medical image analysis, autonomous vehicles, robotics, virtual reality, lithium battery image analysis, etc. In the past, 3D segmentation was performed using hand-made features and design techniques, but these techniques could not generalize to vast amounts of data or reach acceptable accuracy. Deep learning techniques have lately emerged as the preferred method for 3D segmentation jobs as a result of their extraordinary performance in 2D computer vision. Our proposed method used a CNN-based architecture called 3D UNET, which is inspired by the famous 2D UNET that has been used to segment volumetric image data. To see the internal changes of composite materials, for instance, in a lithium battery image, it is necessary to see the flow of different materials and follow the directions analyzing the inside properties. In this paper, a combination of 3D UNET and VGG19 has been used to conduct a multiclass segmentation of publicly available sandstone datasets to analyze their microstructures using image data based on four different objects in the samples of volumetric data. In our image sample, there are a total of 448 2D images, which are then aggregated as one 3D volume to examine the 3D volumetric data. The solution involves the segmentation of each object in the volume data and further analysis of each object to find its average size, area percentage, total area, etc. The open-source image processing package IMAGEJ is used for further analysis of individual particles. In this study, it was demonstrated that convolutional neural networks can be trained to recognize sandstone microstructure traits with an accuracy of 96.78% and an IOU of 91.12%. According to our knowledge, many prior works have applied 3D UNET for segmentation, but very few papers extend it further to show the details of particles in the sample. The proposed solution offers a computational insight for real-time implementation and is discovered to be superior to the current state-of-the-art methods. The result has importance for the creation of an approximately similar model for the microstructural analysis of volumetric data." @default.
- W4322629693 created "2023-03-01" @default.
- W4322629693 creator A5014407776 @default.
- W4322629693 creator A5052011190 @default.
- W4322629693 creator A5069646952 @default.
- W4322629693 creator A5071194728 @default.
- W4322629693 creator A5074720325 @default.
- W4322629693 date "2023-02-27" @default.
- W4322629693 modified "2023-09-30" @default.
- W4322629693 title "Deep Learning-Based Segmentation of 3D Volumetric Image and Microstructural Analysis" @default.
- W4322629693 cites W1745334888 @default.
- W4322629693 cites W1901129140 @default.
- W4322629693 cites W2064287713 @default.
- W4322629693 cites W2104095591 @default.
- W4322629693 cites W2105686893 @default.
- W4322629693 cites W2154996879 @default.
- W4322629693 cites W2342591535 @default.
- W4322629693 cites W2618530766 @default.
- W4322629693 cites W2962914239 @default.
- W4322629693 cites W2963881378 @default.
- W4322629693 cites W3034785488 @default.
- W4322629693 cites W3087594737 @default.
- W4322629693 cites W3094071141 @default.
- W4322629693 cites W3128855426 @default.
- W4322629693 cites W3172355168 @default.
- W4322629693 cites W3173018040 @default.
- W4322629693 cites W3209556830 @default.
- W4322629693 cites W4205172069 @default.
- W4322629693 cites W4206940773 @default.
- W4322629693 cites W4288084733 @default.
- W4322629693 cites W4293053819 @default.
- W4322629693 cites W4293546472 @default.
- W4322629693 cites W4295220592 @default.
- W4322629693 cites W4295337699 @default.
- W4322629693 cites W4304172553 @default.
- W4322629693 cites W4304979935 @default.
- W4322629693 cites W4307957701 @default.
- W4322629693 cites W4311747011 @default.
- W4322629693 cites W4313452645 @default.
- W4322629693 doi "https://doi.org/10.3390/s23052640" @default.
- W4322629693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36904845" @default.
- W4322629693 hasPublicationYear "2023" @default.
- W4322629693 type Work @default.
- W4322629693 citedByCount "1" @default.
- W4322629693 countsByYear W43226296932023 @default.
- W4322629693 crossrefType "journal-article" @default.
- W4322629693 hasAuthorship W4322629693A5014407776 @default.
- W4322629693 hasAuthorship W4322629693A5052011190 @default.
- W4322629693 hasAuthorship W4322629693A5069646952 @default.
- W4322629693 hasAuthorship W4322629693A5071194728 @default.
- W4322629693 hasAuthorship W4322629693A5074720325 @default.
- W4322629693 hasBestOaLocation W43226296931 @default.
- W4322629693 hasConcept C108583219 @default.
- W4322629693 hasConcept C115961682 @default.
- W4322629693 hasConcept C121332964 @default.
- W4322629693 hasConcept C124504099 @default.
- W4322629693 hasConcept C153180895 @default.
- W4322629693 hasConcept C154945302 @default.
- W4322629693 hasConcept C185592680 @default.
- W4322629693 hasConcept C198531522 @default.
- W4322629693 hasConcept C20556612 @default.
- W4322629693 hasConcept C2781238097 @default.
- W4322629693 hasConcept C31972630 @default.
- W4322629693 hasConcept C41008148 @default.
- W4322629693 hasConcept C43617362 @default.
- W4322629693 hasConcept C62520636 @default.
- W4322629693 hasConcept C89600930 @default.
- W4322629693 hasConcept C9417928 @default.
- W4322629693 hasConceptScore W4322629693C108583219 @default.
- W4322629693 hasConceptScore W4322629693C115961682 @default.
- W4322629693 hasConceptScore W4322629693C121332964 @default.
- W4322629693 hasConceptScore W4322629693C124504099 @default.
- W4322629693 hasConceptScore W4322629693C153180895 @default.
- W4322629693 hasConceptScore W4322629693C154945302 @default.
- W4322629693 hasConceptScore W4322629693C185592680 @default.
- W4322629693 hasConceptScore W4322629693C198531522 @default.
- W4322629693 hasConceptScore W4322629693C20556612 @default.
- W4322629693 hasConceptScore W4322629693C2781238097 @default.
- W4322629693 hasConceptScore W4322629693C31972630 @default.
- W4322629693 hasConceptScore W4322629693C41008148 @default.
- W4322629693 hasConceptScore W4322629693C43617362 @default.
- W4322629693 hasConceptScore W4322629693C62520636 @default.
- W4322629693 hasConceptScore W4322629693C89600930 @default.
- W4322629693 hasConceptScore W4322629693C9417928 @default.
- W4322629693 hasIssue "5" @default.
- W4322629693 hasLocation W43226296931 @default.
- W4322629693 hasLocation W43226296932 @default.
- W4322629693 hasLocation W43226296933 @default.
- W4322629693 hasLocation W43226296934 @default.
- W4322629693 hasOpenAccess W4322629693 @default.
- W4322629693 hasPrimaryLocation W43226296931 @default.
- W4322629693 hasRelatedWork W1669643531 @default.
- W4322629693 hasRelatedWork W2005437358 @default.
- W4322629693 hasRelatedWork W2007544051 @default.
- W4322629693 hasRelatedWork W2008656436 @default.
- W4322629693 hasRelatedWork W2019566805 @default.
- W4322629693 hasRelatedWork W2517104666 @default.
- W4322629693 hasRelatedWork W2790662084 @default.