Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322631657> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4322631657 endingPage "200208" @default.
- W4322631657 startingPage "200208" @default.
- W4322631657 abstract "Machine learning based approaches for automatic disease prediction is a novel research area in healthcare informatics. Electronic Health Records in medical settings improves early-stage illness diagnosis. However, when standard rule-based approaches, like doctor's prescription or laboratory test reports are employed for disease diagnosis, the advantages of EHRs are not accomplished adequately. As a result, there is a requirement of technology based solution which helps in prediction of psychological diseases in a more efficient way. The proposed research work offers a hybrid Hopfield recurrent neural network (H2RN2) approach to predict psychological diseases by using amorphous clinical EHRs taken from Kaggle database. The proposed model automatically learns inherent semantic characteristics from available clinical data items. It uses fivefold cross validation technique within a recurrent neural network which detracts over fitting of the model. In addition to effective learning during training of the model, the hybrid approach also helps in accurate prediction of the disease with improved accuracy. The proposed model is assessed using three measuring parameters, accuracy, recall and F1-score and yields an accuracy of 97.53% in experimental evaluation, which is superior to several existing approaches for psychological disease prediction. The results demonstrate that the proposed model outperforms several other techniques in predicting the risk of psychiatric disorders. In future, the similar approach may be employed to predict gender-based psychological diseases or to anticipate the risk of various physiological diseases." @default.
- W4322631657 created "2023-03-01" @default.
- W4322631657 creator A5039847156 @default.
- W4322631657 creator A5075106254 @default.
- W4322631657 creator A5079311776 @default.
- W4322631657 date "2023-05-01" @default.
- W4322631657 modified "2023-09-23" @default.
- W4322631657 title "An intelligent disease prediction system for psychological diseases by implementing hybrid hopfield recurrent neural network approach" @default.
- W4322631657 cites W1041845854 @default.
- W4322631657 cites W1987487142 @default.
- W4322631657 cites W2003502731 @default.
- W4322631657 cites W2033739466 @default.
- W4322631657 cites W2144723972 @default.
- W4322631657 cites W2194940824 @default.
- W4322631657 cites W2239141610 @default.
- W4322631657 cites W2251335235 @default.
- W4322631657 cites W2297827560 @default.
- W4322631657 cites W2412208823 @default.
- W4322631657 cites W2463184507 @default.
- W4322631657 cites W2483187579 @default.
- W4322631657 cites W2498298636 @default.
- W4322631657 cites W2516037800 @default.
- W4322631657 cites W2527522263 @default.
- W4322631657 cites W2559785631 @default.
- W4322631657 cites W2566424235 @default.
- W4322631657 cites W2570412145 @default.
- W4322631657 cites W2586286573 @default.
- W4322631657 cites W2610135452 @default.
- W4322631657 cites W2734832579 @default.
- W4322631657 cites W2741216199 @default.
- W4322631657 cites W2760537051 @default.
- W4322631657 cites W2768138179 @default.
- W4322631657 cites W2768601846 @default.
- W4322631657 cites W2788388592 @default.
- W4322631657 cites W2789609126 @default.
- W4322631657 cites W2791062765 @default.
- W4322631657 cites W2792616458 @default.
- W4322631657 cites W2796802878 @default.
- W4322631657 cites W2807501209 @default.
- W4322631657 cites W2828567772 @default.
- W4322631657 cites W2885806496 @default.
- W4322631657 cites W2886160423 @default.
- W4322631657 cites W2897583329 @default.
- W4322631657 cites W2898866157 @default.
- W4322631657 cites W2916755661 @default.
- W4322631657 cites W2924742436 @default.
- W4322631657 cites W2944458161 @default.
- W4322631657 cites W2988622501 @default.
- W4322631657 cites W2995352324 @default.
- W4322631657 cites W3004047823 @default.
- W4322631657 cites W3157759986 @default.
- W4322631657 doi "https://doi.org/10.1016/j.iswa.2023.200208" @default.
- W4322631657 hasPublicationYear "2023" @default.
- W4322631657 type Work @default.
- W4322631657 citedByCount "1" @default.
- W4322631657 countsByYear W43226316572023 @default.
- W4322631657 crossrefType "journal-article" @default.
- W4322631657 hasAuthorship W4322631657A5039847156 @default.
- W4322631657 hasAuthorship W4322631657A5075106254 @default.
- W4322631657 hasAuthorship W4322631657A5079311776 @default.
- W4322631657 hasBestOaLocation W43226316571 @default.
- W4322631657 hasConcept C119857082 @default.
- W4322631657 hasConcept C124101348 @default.
- W4322631657 hasConcept C147168706 @default.
- W4322631657 hasConcept C154945302 @default.
- W4322631657 hasConcept C41008148 @default.
- W4322631657 hasConcept C50644808 @default.
- W4322631657 hasConceptScore W4322631657C119857082 @default.
- W4322631657 hasConceptScore W4322631657C124101348 @default.
- W4322631657 hasConceptScore W4322631657C147168706 @default.
- W4322631657 hasConceptScore W4322631657C154945302 @default.
- W4322631657 hasConceptScore W4322631657C41008148 @default.
- W4322631657 hasConceptScore W4322631657C50644808 @default.
- W4322631657 hasLocation W43226316571 @default.
- W4322631657 hasOpenAccess W4322631657 @default.
- W4322631657 hasPrimaryLocation W43226316571 @default.
- W4322631657 hasRelatedWork W2902723393 @default.
- W4322631657 hasRelatedWork W2961085424 @default.
- W4322631657 hasRelatedWork W3046775127 @default.
- W4322631657 hasRelatedWork W4281386417 @default.
- W4322631657 hasRelatedWork W4285260836 @default.
- W4322631657 hasRelatedWork W4286629047 @default.
- W4322631657 hasRelatedWork W4306321456 @default.
- W4322631657 hasRelatedWork W4306674287 @default.
- W4322631657 hasRelatedWork W4327831767 @default.
- W4322631657 hasRelatedWork W4224009465 @default.
- W4322631657 hasVolume "18" @default.
- W4322631657 isParatext "false" @default.
- W4322631657 isRetracted "false" @default.
- W4322631657 workType "article" @default.