Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322716287> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4322716287 abstract "U-10Zr-based nuclear fuel is pursued as a primary candidate for next-generation sodium-cooled fast reactors. However, more advanced characterization and analysis are needed to form a fundamental understating of the fuel performance, and make U-10Zr fuel qualify for commercial use. The movement of lanthanides across the fuel section from the hot fuel center to the cool cladding surface is one of the key factors to affect fuel performance. In the advanced annular U-10Zr fuel, the lanthanides present as fission gas bubbles. Due to a lack of annotated data, existing literature utilized a multiple-threshold method to separate the bubbles and calculate bubble statistics on an annular fuel. However, the multiple-threshold method cannot achieve robust performance on images with different qualities and contrasts, and cannot distinguish different bubbles. This paper proposes a hybrid framework for efficient bubble segmentation. We develop a bubble annotation tool and generate the first fission gas bubble dataset with more than 3000 bubbles from 24 images. A multi-task deep learning network integrating U-Net and ResNet is designed to accomplish instance-level bubble segmentation. Combining the segmentation results and image processing step achieves the best recall ratio of more than 90% with very limited annotated data. Our model shows outstanding improvement by comparing the previously proposed thresholding method. The proposed method has promising to generate a more accurate quantitative analysis of fission gas bubbles on U-10Zr annular fuels. The results will contribute to identifying the bubbles with lanthanides and finally build the relationship between the thermal gradation and lanthanides movements of U-10Zr annular fuels. Mover, the deep learning model is applicable to other similar material micro-structure segmentation tasks." @default.
- W4322716287 created "2023-03-03" @default.
- W4322716287 creator A5007010423 @default.
- W4322716287 creator A5017873319 @default.
- W4322716287 creator A5038590199 @default.
- W4322716287 creator A5057647065 @default.
- W4322716287 creator A5071938296 @default.
- W4322716287 creator A5077816179 @default.
- W4322716287 creator A5080652935 @default.
- W4322716287 creator A5089962019 @default.
- W4322716287 date "2023-02-08" @default.
- W4322716287 modified "2023-10-16" @default.
- W4322716287 title "An Efficient Instance Segmentation Approach for Extracting Fission Gas Bubbles on U-10Zr Annular Fuel" @default.
- W4322716287 doi "https://doi.org/10.48550/arxiv.2302.12833" @default.
- W4322716287 hasPublicationYear "2023" @default.
- W4322716287 type Work @default.
- W4322716287 citedByCount "0" @default.
- W4322716287 crossrefType "posted-content" @default.
- W4322716287 hasAuthorship W4322716287A5007010423 @default.
- W4322716287 hasAuthorship W4322716287A5017873319 @default.
- W4322716287 hasAuthorship W4322716287A5038590199 @default.
- W4322716287 hasAuthorship W4322716287A5057647065 @default.
- W4322716287 hasAuthorship W4322716287A5071938296 @default.
- W4322716287 hasAuthorship W4322716287A5077816179 @default.
- W4322716287 hasAuthorship W4322716287A5080652935 @default.
- W4322716287 hasAuthorship W4322716287A5089962019 @default.
- W4322716287 hasBestOaLocation W43227162871 @default.
- W4322716287 hasConcept C115961682 @default.
- W4322716287 hasConcept C121332964 @default.
- W4322716287 hasConcept C12294094 @default.
- W4322716287 hasConcept C152568617 @default.
- W4322716287 hasConcept C154945302 @default.
- W4322716287 hasConcept C157915830 @default.
- W4322716287 hasConcept C173608175 @default.
- W4322716287 hasConcept C185544564 @default.
- W4322716287 hasConcept C191178318 @default.
- W4322716287 hasConcept C41008148 @default.
- W4322716287 hasConcept C89600930 @default.
- W4322716287 hasConceptScore W4322716287C115961682 @default.
- W4322716287 hasConceptScore W4322716287C121332964 @default.
- W4322716287 hasConceptScore W4322716287C12294094 @default.
- W4322716287 hasConceptScore W4322716287C152568617 @default.
- W4322716287 hasConceptScore W4322716287C154945302 @default.
- W4322716287 hasConceptScore W4322716287C157915830 @default.
- W4322716287 hasConceptScore W4322716287C173608175 @default.
- W4322716287 hasConceptScore W4322716287C185544564 @default.
- W4322716287 hasConceptScore W4322716287C191178318 @default.
- W4322716287 hasConceptScore W4322716287C41008148 @default.
- W4322716287 hasConceptScore W4322716287C89600930 @default.
- W4322716287 hasLocation W43227162871 @default.
- W4322716287 hasOpenAccess W4322716287 @default.
- W4322716287 hasPrimaryLocation W43227162871 @default.
- W4322716287 hasRelatedWork W2018206842 @default.
- W4322716287 hasRelatedWork W2045391057 @default.
- W4322716287 hasRelatedWork W2047939071 @default.
- W4322716287 hasRelatedWork W2058443653 @default.
- W4322716287 hasRelatedWork W2181351615 @default.
- W4322716287 hasRelatedWork W2347731544 @default.
- W4322716287 hasRelatedWork W2350588503 @default.
- W4322716287 hasRelatedWork W2411367154 @default.
- W4322716287 hasRelatedWork W2551390060 @default.
- W4322716287 hasRelatedWork W2932329182 @default.
- W4322716287 isParatext "false" @default.
- W4322716287 isRetracted "false" @default.
- W4322716287 workType "article" @default.