Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322718982> ?p ?o ?g. }
- W4322718982 endingPage "2073" @default.
- W4322718982 startingPage "2065" @default.
- W4322718982 abstract "Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings." @default.
- W4322718982 created "2023-03-03" @default.
- W4322718982 creator A5003943460 @default.
- W4322718982 creator A5007388121 @default.
- W4322718982 creator A5012650523 @default.
- W4322718982 creator A5017044520 @default.
- W4322718982 creator A5049840465 @default.
- W4322718982 creator A5064879447 @default.
- W4322718982 creator A5079081772 @default.
- W4322718982 creator A5085255857 @default.
- W4322718982 creator A5088956000 @default.
- W4322718982 date "2023-03-01" @default.
- W4322718982 modified "2023-09-27" @default.
- W4322718982 title "Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood" @default.
- W4322718982 cites W1964428918 @default.
- W4322718982 cites W1967351828 @default.
- W4322718982 cites W1973145637 @default.
- W4322718982 cites W1976297170 @default.
- W4322718982 cites W1983647612 @default.
- W4322718982 cites W1985477303 @default.
- W4322718982 cites W1992733645 @default.
- W4322718982 cites W2006209772 @default.
- W4322718982 cites W2018050443 @default.
- W4322718982 cites W2022977040 @default.
- W4322718982 cites W2028872582 @default.
- W4322718982 cites W2036563543 @default.
- W4322718982 cites W2042929094 @default.
- W4322718982 cites W2043798452 @default.
- W4322718982 cites W2046281411 @default.
- W4322718982 cites W2046516901 @default.
- W4322718982 cites W2048637250 @default.
- W4322718982 cites W2049332147 @default.
- W4322718982 cites W2057179163 @default.
- W4322718982 cites W2059539437 @default.
- W4322718982 cites W2064130840 @default.
- W4322718982 cites W2066077272 @default.
- W4322718982 cites W2069439040 @default.
- W4322718982 cites W2082573591 @default.
- W4322718982 cites W2087780185 @default.
- W4322718982 cites W2099592214 @default.
- W4322718982 cites W2107183572 @default.
- W4322718982 cites W2115797520 @default.
- W4322718982 cites W2133384543 @default.
- W4322718982 cites W2133962630 @default.
- W4322718982 cites W2136919716 @default.
- W4322718982 cites W2137295250 @default.
- W4322718982 cites W2144080673 @default.
- W4322718982 cites W2144589352 @default.
- W4322718982 cites W2147762728 @default.
- W4322718982 cites W2150853706 @default.
- W4322718982 cites W2160939384 @default.
- W4322718982 cites W2162537107 @default.
- W4322718982 cites W2169398533 @default.
- W4322718982 cites W2289372588 @default.
- W4322718982 cites W2418062995 @default.
- W4322718982 cites W2528018901 @default.
- W4322718982 cites W2606314294 @default.
- W4322718982 cites W2794904816 @default.
- W4322718982 cites W2807020382 @default.
- W4322718982 cites W2882993443 @default.
- W4322718982 cites W2891370923 @default.
- W4322718982 cites W2897975150 @default.
- W4322718982 cites W2904648823 @default.
- W4322718982 cites W2911349318 @default.
- W4322718982 cites W2911988733 @default.
- W4322718982 cites W2920655095 @default.
- W4322718982 cites W2945099731 @default.
- W4322718982 cites W2982482221 @default.
- W4322718982 cites W2995578471 @default.
- W4322718982 cites W2996599955 @default.
- W4322718982 cites W2998444871 @default.
- W4322718982 cites W3003280388 @default.
- W4322718982 cites W3008312349 @default.
- W4322718982 cites W3038982322 @default.
- W4322718982 cites W3084886044 @default.
- W4322718982 cites W3085885471 @default.
- W4322718982 cites W3087493908 @default.
- W4322718982 cites W3093457085 @default.
- W4322718982 cites W3103593120 @default.
- W4322718982 cites W3130698428 @default.
- W4322718982 cites W3146159750 @default.
- W4322718982 cites W3162919938 @default.
- W4322718982 cites W3204382314 @default.
- W4322718982 cites W3211649171 @default.
- W4322718982 cites W4233131388 @default.
- W4322718982 cites W627859966 @default.
- W4322718982 doi "https://doi.org/10.1021/acs.nanolett.2c03015" @default.
- W4322718982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36856600" @default.
- W4322718982 hasPublicationYear "2023" @default.
- W4322718982 type Work @default.
- W4322718982 citedByCount "3" @default.
- W4322718982 countsByYear W43227189822023 @default.
- W4322718982 crossrefType "journal-article" @default.
- W4322718982 hasAuthorship W4322718982A5003943460 @default.
- W4322718982 hasAuthorship W4322718982A5007388121 @default.
- W4322718982 hasAuthorship W4322718982A5012650523 @default.
- W4322718982 hasAuthorship W4322718982A5017044520 @default.
- W4322718982 hasAuthorship W4322718982A5049840465 @default.