Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322719400> ?p ?o ?g. }
- W4322719400 endingPage "4577" @default.
- W4322719400 startingPage "4562" @default.
- W4322719400 abstract "Abstract Background The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation‐sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range. Purpose Here, we aim to estimate the range estimation precision of this technique. As for any stochastic measurement, the precision will increase with the sample size, that is, the number of detected vaporizations. Thus, we first develop and validate a model to predict the number of vaporizations, which is then applied to estimate the range verification precision for a set of conditions (droplet size, droplet concentration, and proton beam parameters). Methods Starting from the thermal spike theory, we derived a model that predicts the expected number of droplet vaporizations in an irradiated sample as a function of the droplet size, concentration, and number of protons. The model was validated by irradiating phantoms consisting of size‐sorted perfluorobutane droplets dispersed in an aqueous matrix. The number of protons was counted with an ionization chamber, and the droplet vaporizations were recorded and counted individually using high frame rate ultrasound imaging. After validation, the range estimate precision was determined for different conditions using a Monte Carlo algorithm. Results A good agreement between theory and experiments was observed for the number of vaporizations, especially for large (5.8 ± 2.2 µm) and medium (3.5 ± 1.1 µm) sized droplets. The number of events was lower than expected in phantoms with small droplets (2.0 ± 0.7 µm), but still within the same order of magnitude. The inter‐phantom variability was considerably larger (up to 30x) than predicted by the model. The validated model was then combined with Monte Carlo simulations, which predicted a theoretical range retrieval precision improving with the square‐root of the number of vaporizations, and degrading at high beam energies due to range straggling. For single pencil beams with energies between 70 and 240 MeV, a range verification precision below 1% of the range required perfluorocarbon concentrations in the order of 0.3‐2.4 µM. Conclusion We proposed and experimentally validated a model to provide a quick estimate of the number of vaporizations for a given set of conditions (droplet size, droplet concentration, and proton beam parameters). From this model, promising range verification performances were predicted for realistic perfluorocarbon concentrations. These findings are an incentive to move towards preclinical studies, which are critical to assess the achievable droplet distribution in and around the tumor, and hence the in vivo range verification precision." @default.
- W4322719400 created "2023-03-03" @default.
- W4322719400 creator A5002329936 @default.
- W4322719400 creator A5008234004 @default.
- W4322719400 creator A5043737347 @default.
- W4322719400 creator A5061246031 @default.
- W4322719400 creator A5063033700 @default.
- W4322719400 creator A5063338997 @default.
- W4322719400 creator A5064451967 @default.
- W4322719400 creator A5068103917 @default.
- W4322719400 date "2023-03-11" @default.
- W4322719400 modified "2023-10-12" @default.
- W4322719400 title "Analytic prediction of droplet vaporization events to estimate the precision of ultrasound‐based proton range verification" @default.
- W4322719400 cites W1964828595 @default.
- W4322719400 cites W1985573072 @default.
- W4322719400 cites W1987946553 @default.
- W4322719400 cites W1995475798 @default.
- W4322719400 cites W2002838713 @default.
- W4322719400 cites W2023533387 @default.
- W4322719400 cites W2024290878 @default.
- W4322719400 cites W2032916735 @default.
- W4322719400 cites W2036704025 @default.
- W4322719400 cites W2043603625 @default.
- W4322719400 cites W2048611236 @default.
- W4322719400 cites W2053026677 @default.
- W4322719400 cites W2062039397 @default.
- W4322719400 cites W2074751450 @default.
- W4322719400 cites W2076728050 @default.
- W4322719400 cites W2131921533 @default.
- W4322719400 cites W2137249516 @default.
- W4322719400 cites W2138438349 @default.
- W4322719400 cites W2143236170 @default.
- W4322719400 cites W2144241398 @default.
- W4322719400 cites W2157323758 @default.
- W4322719400 cites W2164635920 @default.
- W4322719400 cites W2166343165 @default.
- W4322719400 cites W2168439775 @default.
- W4322719400 cites W2174473997 @default.
- W4322719400 cites W2177801935 @default.
- W4322719400 cites W2198254443 @default.
- W4322719400 cites W2257349442 @default.
- W4322719400 cites W2414083225 @default.
- W4322719400 cites W2512442512 @default.
- W4322719400 cites W2536569440 @default.
- W4322719400 cites W2584486655 @default.
- W4322719400 cites W2606058003 @default.
- W4322719400 cites W2610283735 @default.
- W4322719400 cites W2799412559 @default.
- W4322719400 cites W2889878894 @default.
- W4322719400 cites W2901762611 @default.
- W4322719400 cites W2936120730 @default.
- W4322719400 cites W2943826028 @default.
- W4322719400 cites W2946165082 @default.
- W4322719400 cites W3007542985 @default.
- W4322719400 cites W3033462402 @default.
- W4322719400 cites W3046160974 @default.
- W4322719400 cites W3081258074 @default.
- W4322719400 cites W3092079407 @default.
- W4322719400 cites W3131688154 @default.
- W4322719400 cites W3195153760 @default.
- W4322719400 cites W3205409221 @default.
- W4322719400 cites W3211935605 @default.
- W4322719400 cites W4226225690 @default.
- W4322719400 cites W4302436588 @default.
- W4322719400 cites W4312584393 @default.
- W4322719400 doi "https://doi.org/10.1002/mp.16327" @default.
- W4322719400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36856326" @default.
- W4322719400 hasPublicationYear "2023" @default.
- W4322719400 type Work @default.
- W4322719400 citedByCount "0" @default.
- W4322719400 crossrefType "journal-article" @default.
- W4322719400 hasAuthorship W4322719400A5002329936 @default.
- W4322719400 hasAuthorship W4322719400A5008234004 @default.
- W4322719400 hasAuthorship W4322719400A5043737347 @default.
- W4322719400 hasAuthorship W4322719400A5061246031 @default.
- W4322719400 hasAuthorship W4322719400A5063033700 @default.
- W4322719400 hasAuthorship W4322719400A5063338997 @default.
- W4322719400 hasAuthorship W4322719400A5064451967 @default.
- W4322719400 hasAuthorship W4322719400A5068103917 @default.
- W4322719400 hasBestOaLocation W43227194001 @default.
- W4322719400 hasConcept C105795698 @default.
- W4322719400 hasConcept C121332964 @default.
- W4322719400 hasConcept C159985019 @default.
- W4322719400 hasConcept C185544564 @default.
- W4322719400 hasConcept C192562407 @default.
- W4322719400 hasConcept C19499675 @default.
- W4322719400 hasConcept C195801359 @default.
- W4322719400 hasConcept C204323151 @default.
- W4322719400 hasConcept C2779244869 @default.
- W4322719400 hasConcept C2780944729 @default.
- W4322719400 hasConcept C30475298 @default.
- W4322719400 hasConcept C33923547 @default.
- W4322719400 hasConcept C54516573 @default.
- W4322719400 hasConcept C97355855 @default.
- W4322719400 hasConceptScore W4322719400C105795698 @default.
- W4322719400 hasConceptScore W4322719400C121332964 @default.
- W4322719400 hasConceptScore W4322719400C159985019 @default.
- W4322719400 hasConceptScore W4322719400C185544564 @default.