Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322731323> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4322731323 abstract "The issue of whether data collection can use an effective sampling strategy presents a challenge to the researcher. Researchers must be familiar with the distinctions in order to choose the most suitable sampling technique or method for the particular study under consideration, given the vast number and variety of sampling techniques and methods that are available. The bibliometric analysis also done for the sampling technique with computer science according to country wise and year wise which provide better ideas for future research. The scope of keyword and citation for the document describe with results obtained using the VosViewer software and data from the Web of Science and Scopus databases unsupervised ML techniques are used to solve the sampling problem. There are different types of ML techniques that are applied to sampling, i.e., K-Mean clustering, DBSCAN, Fuzzy clustering, etc. This research also examines the fundamental ideas of probability sampling, as well as various probability sampling approaches and their strengths and weaknesses." @default.
- W4322731323 created "2023-03-03" @default.
- W4322731323 creator A5001035812 @default.
- W4322731323 creator A5010909960 @default.
- W4322731323 creator A5024101249 @default.
- W4322731323 creator A5038287391 @default.
- W4322731323 creator A5046290333 @default.
- W4322731323 date "2022-11-25" @default.
- W4322731323 modified "2023-09-25" @default.
- W4322731323 title "Prominent Sampling Techniques Analysis in Machine Learning: Bibliometric Survey and Performance Evaluation" @default.
- W4322731323 cites W2093651020 @default.
- W4322731323 cites W2763552624 @default.
- W4322731323 cites W2900523186 @default.
- W4322731323 cites W2989416790 @default.
- W4322731323 cites W3039445169 @default.
- W4322731323 cites W3084084050 @default.
- W4322731323 cites W3090905292 @default.
- W4322731323 cites W3091535517 @default.
- W4322731323 cites W3096767189 @default.
- W4322731323 cites W3103257411 @default.
- W4322731323 cites W3111112492 @default.
- W4322731323 cites W3160157503 @default.
- W4322731323 cites W3196214252 @default.
- W4322731323 cites W3213019218 @default.
- W4322731323 cites W4281622058 @default.
- W4322731323 cites W4288754453 @default.
- W4322731323 cites W4288754496 @default.
- W4322731323 cites W4293087566 @default.
- W4322731323 cites W4312705457 @default.
- W4322731323 doi "https://doi.org/10.1109/pdgc56933.2022.10053294" @default.
- W4322731323 hasPublicationYear "2022" @default.
- W4322731323 type Work @default.
- W4322731323 citedByCount "3" @default.
- W4322731323 countsByYear W43227313232023 @default.
- W4322731323 crossrefType "proceedings-article" @default.
- W4322731323 hasAuthorship W4322731323A5001035812 @default.
- W4322731323 hasAuthorship W4322731323A5010909960 @default.
- W4322731323 hasAuthorship W4322731323A5024101249 @default.
- W4322731323 hasAuthorship W4322731323A5038287391 @default.
- W4322731323 hasAuthorship W4322731323A5046290333 @default.
- W4322731323 hasConcept C106131492 @default.
- W4322731323 hasConcept C111472728 @default.
- W4322731323 hasConcept C119857082 @default.
- W4322731323 hasConcept C124101348 @default.
- W4322731323 hasConcept C136197465 @default.
- W4322731323 hasConcept C138885662 @default.
- W4322731323 hasConcept C140779682 @default.
- W4322731323 hasConcept C154945302 @default.
- W4322731323 hasConcept C199360897 @default.
- W4322731323 hasConcept C23123220 @default.
- W4322731323 hasConcept C2522767166 @default.
- W4322731323 hasConcept C2778012447 @default.
- W4322731323 hasConcept C31972630 @default.
- W4322731323 hasConcept C41008148 @default.
- W4322731323 hasConcept C63882131 @default.
- W4322731323 hasConcept C73555534 @default.
- W4322731323 hasConceptScore W4322731323C106131492 @default.
- W4322731323 hasConceptScore W4322731323C111472728 @default.
- W4322731323 hasConceptScore W4322731323C119857082 @default.
- W4322731323 hasConceptScore W4322731323C124101348 @default.
- W4322731323 hasConceptScore W4322731323C136197465 @default.
- W4322731323 hasConceptScore W4322731323C138885662 @default.
- W4322731323 hasConceptScore W4322731323C140779682 @default.
- W4322731323 hasConceptScore W4322731323C154945302 @default.
- W4322731323 hasConceptScore W4322731323C199360897 @default.
- W4322731323 hasConceptScore W4322731323C23123220 @default.
- W4322731323 hasConceptScore W4322731323C2522767166 @default.
- W4322731323 hasConceptScore W4322731323C2778012447 @default.
- W4322731323 hasConceptScore W4322731323C31972630 @default.
- W4322731323 hasConceptScore W4322731323C41008148 @default.
- W4322731323 hasConceptScore W4322731323C63882131 @default.
- W4322731323 hasConceptScore W4322731323C73555534 @default.
- W4322731323 hasLocation W43227313231 @default.
- W4322731323 hasOpenAccess W4322731323 @default.
- W4322731323 hasPrimaryLocation W43227313231 @default.
- W4322731323 hasRelatedWork W2009596306 @default.
- W4322731323 hasRelatedWork W2144190808 @default.
- W4322731323 hasRelatedWork W2154420414 @default.
- W4322731323 hasRelatedWork W2288822265 @default.
- W4322731323 hasRelatedWork W2368918385 @default.
- W4322731323 hasRelatedWork W2384888906 @default.
- W4322731323 hasRelatedWork W2949583744 @default.
- W4322731323 hasRelatedWork W2961085424 @default.
- W4322731323 hasRelatedWork W4245322187 @default.
- W4322731323 hasRelatedWork W4306674287 @default.
- W4322731323 isParatext "false" @default.
- W4322731323 isRetracted "false" @default.
- W4322731323 workType "article" @default.