Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322731337> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4322731337 abstract "Around 60.3% of land in India is used for agricultural purposes and the whole population depends on agriculture. That’s why crop yield is very crucial to get high agricultural output. The economical loss will be very high if the agricultural output is low. So, that’s why the diagnosis of disease in plants is very important. And the detection should be in the early stage not in a later stage. Using Deep Learning (DL) i.e. a branch of Artificial Intelligence (AI), a farmer can detect plant diseases very easily. In Deep Learning(DL), Convolutional Neural Networks (CNNs) are a cutting-edge method for image classification tasks. And Plant Disease Detection is an image classification task in which image is given as input and a class of plant disease is obtained as an output. This research study reviews the CNN-based approaches that are used to detect various diseases in plants." @default.
- W4322731337 created "2023-03-03" @default.
- W4322731337 creator A5020069466 @default.
- W4322731337 creator A5081891713 @default.
- W4322731337 date "2023-01-05" @default.
- W4322731337 modified "2023-10-16" @default.
- W4322731337 title "A Review of Convolutional Neural Network-based Approaches for Disease Detection in Plants" @default.
- W4322731337 cites W2473156356 @default.
- W4322731337 cites W2789255992 @default.
- W4322731337 cites W2805764882 @default.
- W4322731337 cites W2927613875 @default.
- W4322731337 cites W2938959907 @default.
- W4322731337 cites W3015562698 @default.
- W4322731337 cites W3016522735 @default.
- W4322731337 cites W3093956116 @default.
- W4322731337 cites W3095722810 @default.
- W4322731337 cites W3134031383 @default.
- W4322731337 cites W3149839483 @default.
- W4322731337 cites W3159730880 @default.
- W4322731337 cites W3160766702 @default.
- W4322731337 cites W3203164203 @default.
- W4322731337 cites W4285594003 @default.
- W4322731337 doi "https://doi.org/10.1109/idciot56793.2023.10053428" @default.
- W4322731337 hasPublicationYear "2023" @default.
- W4322731337 type Work @default.
- W4322731337 citedByCount "0" @default.
- W4322731337 crossrefType "proceedings-article" @default.
- W4322731337 hasAuthorship W4322731337A5020069466 @default.
- W4322731337 hasAuthorship W4322731337A5081891713 @default.
- W4322731337 hasConcept C108583219 @default.
- W4322731337 hasConcept C115961682 @default.
- W4322731337 hasConcept C118518473 @default.
- W4322731337 hasConcept C119857082 @default.
- W4322731337 hasConcept C127413603 @default.
- W4322731337 hasConcept C150903083 @default.
- W4322731337 hasConcept C153180895 @default.
- W4322731337 hasConcept C154945302 @default.
- W4322731337 hasConcept C166957645 @default.
- W4322731337 hasConcept C201995342 @default.
- W4322731337 hasConcept C205649164 @default.
- W4322731337 hasConcept C2780451532 @default.
- W4322731337 hasConcept C2908647359 @default.
- W4322731337 hasConcept C3019235130 @default.
- W4322731337 hasConcept C41008148 @default.
- W4322731337 hasConcept C50644808 @default.
- W4322731337 hasConcept C71924100 @default.
- W4322731337 hasConcept C75294576 @default.
- W4322731337 hasConcept C81363708 @default.
- W4322731337 hasConcept C86803240 @default.
- W4322731337 hasConcept C99454951 @default.
- W4322731337 hasConceptScore W4322731337C108583219 @default.
- W4322731337 hasConceptScore W4322731337C115961682 @default.
- W4322731337 hasConceptScore W4322731337C118518473 @default.
- W4322731337 hasConceptScore W4322731337C119857082 @default.
- W4322731337 hasConceptScore W4322731337C127413603 @default.
- W4322731337 hasConceptScore W4322731337C150903083 @default.
- W4322731337 hasConceptScore W4322731337C153180895 @default.
- W4322731337 hasConceptScore W4322731337C154945302 @default.
- W4322731337 hasConceptScore W4322731337C166957645 @default.
- W4322731337 hasConceptScore W4322731337C201995342 @default.
- W4322731337 hasConceptScore W4322731337C205649164 @default.
- W4322731337 hasConceptScore W4322731337C2780451532 @default.
- W4322731337 hasConceptScore W4322731337C2908647359 @default.
- W4322731337 hasConceptScore W4322731337C3019235130 @default.
- W4322731337 hasConceptScore W4322731337C41008148 @default.
- W4322731337 hasConceptScore W4322731337C50644808 @default.
- W4322731337 hasConceptScore W4322731337C71924100 @default.
- W4322731337 hasConceptScore W4322731337C75294576 @default.
- W4322731337 hasConceptScore W4322731337C81363708 @default.
- W4322731337 hasConceptScore W4322731337C86803240 @default.
- W4322731337 hasConceptScore W4322731337C99454951 @default.
- W4322731337 hasLocation W43227313371 @default.
- W4322731337 hasOpenAccess W4322731337 @default.
- W4322731337 hasPrimaryLocation W43227313371 @default.
- W4322731337 hasRelatedWork W2084220915 @default.
- W4322731337 hasRelatedWork W2337926734 @default.
- W4322731337 hasRelatedWork W2470368200 @default.
- W4322731337 hasRelatedWork W2732542196 @default.
- W4322731337 hasRelatedWork W2738221750 @default.
- W4322731337 hasRelatedWork W2766604260 @default.
- W4322731337 hasRelatedWork W3189091156 @default.
- W4322731337 hasRelatedWork W4311257506 @default.
- W4322731337 hasRelatedWork W4319994054 @default.
- W4322731337 hasRelatedWork W564581980 @default.
- W4322731337 isParatext "false" @default.
- W4322731337 isRetracted "false" @default.
- W4322731337 workType "article" @default.