Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322731651> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4322731651 abstract "Brain-related diseases are among the most difficult diseases to cure due to their sensitivity, the danger associated with performing operations, and their unanticipated costs. In contrast, the surgery is not required to be successful, as its effects may be unsuccessful. Therefore, it should be diagnosed at an early stage and the patient should be treated so that they can lead a normal life on their own. WBSN is a novel technology that is applicable in a range of healthcare contexts. WBSNs are made up of several sensors that are implanted in, around, or on the human body to track things like temperature, blood pressure, ECG, and EEG. In developed countries, Alzheimer's disease (AD) is one of the major causes of death. Using computer-aided algorithms has produced outstanding scientific findings, but no practically applicable diagnostic approach is currently available. In recent years, deep models have gained popularity, particularly for image processing. Deep learning methods surpass conventional machine learning algorithms in the recognition of complex patterns in vast quantities of high-dimensional medical imaging data. As a result, there is a growing interest in applying deep learning to medical diagnoses. In this paper, we will examine the most prevalent deep learning algorithms for diagnosing Alzheimer's illness using WBSN." @default.
- W4322731651 created "2023-03-03" @default.
- W4322731651 creator A5006269052 @default.
- W4322731651 creator A5064003744 @default.
- W4322731651 creator A5079101329 @default.
- W4322731651 creator A5085747578 @default.
- W4322731651 date "2022-11-25" @default.
- W4322731651 modified "2023-09-30" @default.
- W4322731651 title "Deep Learning Algorithms for Detecting Alzheimer’s Disease using WBSN" @default.
- W4322731651 cites W1983197035 @default.
- W4322731651 cites W2167712478 @default.
- W4322731651 cites W2580596898 @default.
- W4322731651 cites W2620540240 @default.
- W4322731651 cites W2745128635 @default.
- W4322731651 cites W2764239667 @default.
- W4322731651 cites W2781634873 @default.
- W4322731651 cites W2885195348 @default.
- W4322731651 cites W2895106932 @default.
- W4322731651 cites W2899635607 @default.
- W4322731651 cites W2941551392 @default.
- W4322731651 cites W2967398769 @default.
- W4322731651 cites W2971066862 @default.
- W4322731651 cites W2990581109 @default.
- W4322731651 cites W2997873617 @default.
- W4322731651 cites W3035162004 @default.
- W4322731651 cites W3048379474 @default.
- W4322731651 cites W3093542640 @default.
- W4322731651 cites W3094686023 @default.
- W4322731651 cites W3120270357 @default.
- W4322731651 cites W3120335526 @default.
- W4322731651 cites W3126870425 @default.
- W4322731651 cites W3206738455 @default.
- W4322731651 cites W3208127274 @default.
- W4322731651 cites W3211472585 @default.
- W4322731651 cites W4205950066 @default.
- W4322731651 cites W4210566560 @default.
- W4322731651 cites W4224281602 @default.
- W4322731651 cites W4225773502 @default.
- W4322731651 cites W4288754691 @default.
- W4322731651 doi "https://doi.org/10.1109/pdgc56933.2022.10053196" @default.
- W4322731651 hasPublicationYear "2022" @default.
- W4322731651 type Work @default.
- W4322731651 citedByCount "1" @default.
- W4322731651 countsByYear W43227316512023 @default.
- W4322731651 crossrefType "proceedings-article" @default.
- W4322731651 hasAuthorship W4322731651A5006269052 @default.
- W4322731651 hasAuthorship W4322731651A5064003744 @default.
- W4322731651 hasAuthorship W4322731651A5079101329 @default.
- W4322731651 hasAuthorship W4322731651A5085747578 @default.
- W4322731651 hasConcept C108583219 @default.
- W4322731651 hasConcept C11413529 @default.
- W4322731651 hasConcept C119857082 @default.
- W4322731651 hasConcept C126838900 @default.
- W4322731651 hasConcept C142724271 @default.
- W4322731651 hasConcept C154945302 @default.
- W4322731651 hasConcept C175079658 @default.
- W4322731651 hasConcept C2779134260 @default.
- W4322731651 hasConcept C41008148 @default.
- W4322731651 hasConcept C534262118 @default.
- W4322731651 hasConcept C71924100 @default.
- W4322731651 hasConceptScore W4322731651C108583219 @default.
- W4322731651 hasConceptScore W4322731651C11413529 @default.
- W4322731651 hasConceptScore W4322731651C119857082 @default.
- W4322731651 hasConceptScore W4322731651C126838900 @default.
- W4322731651 hasConceptScore W4322731651C142724271 @default.
- W4322731651 hasConceptScore W4322731651C154945302 @default.
- W4322731651 hasConceptScore W4322731651C175079658 @default.
- W4322731651 hasConceptScore W4322731651C2779134260 @default.
- W4322731651 hasConceptScore W4322731651C41008148 @default.
- W4322731651 hasConceptScore W4322731651C534262118 @default.
- W4322731651 hasConceptScore W4322731651C71924100 @default.
- W4322731651 hasLocation W43227316511 @default.
- W4322731651 hasOpenAccess W4322731651 @default.
- W4322731651 hasPrimaryLocation W43227316511 @default.
- W4322731651 hasRelatedWork W3014300295 @default.
- W4322731651 hasRelatedWork W3164822677 @default.
- W4322731651 hasRelatedWork W3215138031 @default.
- W4322731651 hasRelatedWork W4223943233 @default.
- W4322731651 hasRelatedWork W4225161397 @default.
- W4322731651 hasRelatedWork W4309045103 @default.
- W4322731651 hasRelatedWork W4309637067 @default.
- W4322731651 hasRelatedWork W4312200629 @default.
- W4322731651 hasRelatedWork W4360585206 @default.
- W4322731651 hasRelatedWork W4364306694 @default.
- W4322731651 isParatext "false" @default.
- W4322731651 isRetracted "false" @default.
- W4322731651 workType "article" @default.