Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322731652> ?p ?o ?g. }
- W4322731652 abstract "Deep learning-based solutions for the ill-posed problem of Monocular Depth Estimation (MDE) from 2D color images have shown potential in recent years, spurring a very active field of research. Most state-of-the-art proposals focus on solving the problem in the context of automotive advanced driver assistance and/or autonomous driving systems. While presenting their own complexities and challenges, the vast majority of road environments exhibit a number of commonalities amongst themselves. The aerial domain in which modern Unmanned Aerial Vehicles (UAVs) operate is significantly different and features a large variety of possible scenes based on the specific mission carried out. The increasing number of applications for UAVs could benefit from more advanced learning-based MDE solutions for recovering 3D geometric information from the scene. In this paper, we conduct a study of existing research on the topic of MDE specifically tailored for aerial views, as well as presenting the datasets and tools currently supporting such research, high-lighting the challenges that remain. To the best of our knowledge, this is the first survey covering this field." @default.
- W4322731652 created "2023-03-03" @default.
- W4322731652 creator A5010543525 @default.
- W4322731652 creator A5047954457 @default.
- W4322731652 date "2022-09-22" @default.
- W4322731652 modified "2023-09-28" @default.
- W4322731652 title "Survey on Monocular Depth Estimation for Unmanned Aerial Vehicles using Deep Learning" @default.
- W4322731652 cites W125693051 @default.
- W4322731652 cites W2086356840 @default.
- W4322731652 cites W2133665775 @default.
- W4322731652 cites W2150066425 @default.
- W4322731652 cites W2340897893 @default.
- W4322731652 cites W2396274919 @default.
- W4322731652 cites W2471962767 @default.
- W4322731652 cites W2609883120 @default.
- W4322731652 cites W2615547864 @default.
- W4322731652 cites W2741885505 @default.
- W4322731652 cites W2753067165 @default.
- W4322731652 cites W2794206053 @default.
- W4322731652 cites W2889750088 @default.
- W4322731652 cites W2904337973 @default.
- W4322731652 cites W2913897408 @default.
- W4322731652 cites W2953957675 @default.
- W4322731652 cites W2962793481 @default.
- W4322731652 cites W2962816904 @default.
- W4322731652 cites W2963488291 @default.
- W4322731652 cites W2982102242 @default.
- W4322731652 cites W2985775862 @default.
- W4322731652 cites W2992372985 @default.
- W4322731652 cites W3000500950 @default.
- W4322731652 cites W3011847848 @default.
- W4322731652 cites W3028752951 @default.
- W4322731652 cites W3029840414 @default.
- W4322731652 cites W3035056458 @default.
- W4322731652 cites W3035434014 @default.
- W4322731652 cites W3047442571 @default.
- W4322731652 cites W3118635606 @default.
- W4322731652 cites W3129944514 @default.
- W4322731652 cites W3134120370 @default.
- W4322731652 cites W3153642253 @default.
- W4322731652 cites W3167640521 @default.
- W4322731652 cites W3173169233 @default.
- W4322731652 cites W3173737780 @default.
- W4322731652 cites W3174867673 @default.
- W4322731652 cites W3175682855 @default.
- W4322731652 cites W3185550653 @default.
- W4322731652 cites W3190964284 @default.
- W4322731652 cites W3205178853 @default.
- W4322731652 cites W4206994504 @default.
- W4322731652 cites W4211156803 @default.
- W4322731652 cites W4220725049 @default.
- W4322731652 cites W4220849261 @default.
- W4322731652 cites W4229007520 @default.
- W4322731652 cites W4244382951 @default.
- W4322731652 cites W4284881697 @default.
- W4322731652 cites W764651262 @default.
- W4322731652 doi "https://doi.org/10.1109/iccp56966.2022.10053950" @default.
- W4322731652 hasPublicationYear "2022" @default.
- W4322731652 type Work @default.
- W4322731652 citedByCount "1" @default.
- W4322731652 countsByYear W43227316522022 @default.
- W4322731652 crossrefType "proceedings-article" @default.
- W4322731652 hasAuthorship W4322731652A5010543525 @default.
- W4322731652 hasAuthorship W4322731652A5047954457 @default.
- W4322731652 hasConcept C108583219 @default.
- W4322731652 hasConcept C115961682 @default.
- W4322731652 hasConcept C120665830 @default.
- W4322731652 hasConcept C121332964 @default.
- W4322731652 hasConcept C127413603 @default.
- W4322731652 hasConcept C134306372 @default.
- W4322731652 hasConcept C136197465 @default.
- W4322731652 hasConcept C146978453 @default.
- W4322731652 hasConcept C154945302 @default.
- W4322731652 hasConcept C166957645 @default.
- W4322731652 hasConcept C192209626 @default.
- W4322731652 hasConcept C202444582 @default.
- W4322731652 hasConcept C205649164 @default.
- W4322731652 hasConcept C2522767166 @default.
- W4322731652 hasConcept C2776429412 @default.
- W4322731652 hasConcept C2779343474 @default.
- W4322731652 hasConcept C31972630 @default.
- W4322731652 hasConcept C33923547 @default.
- W4322731652 hasConcept C36503486 @default.
- W4322731652 hasConcept C41008148 @default.
- W4322731652 hasConcept C526921623 @default.
- W4322731652 hasConcept C65909025 @default.
- W4322731652 hasConcept C9652623 @default.
- W4322731652 hasConceptScore W4322731652C108583219 @default.
- W4322731652 hasConceptScore W4322731652C115961682 @default.
- W4322731652 hasConceptScore W4322731652C120665830 @default.
- W4322731652 hasConceptScore W4322731652C121332964 @default.
- W4322731652 hasConceptScore W4322731652C127413603 @default.
- W4322731652 hasConceptScore W4322731652C134306372 @default.
- W4322731652 hasConceptScore W4322731652C136197465 @default.
- W4322731652 hasConceptScore W4322731652C146978453 @default.
- W4322731652 hasConceptScore W4322731652C154945302 @default.
- W4322731652 hasConceptScore W4322731652C166957645 @default.
- W4322731652 hasConceptScore W4322731652C192209626 @default.
- W4322731652 hasConceptScore W4322731652C202444582 @default.
- W4322731652 hasConceptScore W4322731652C205649164 @default.