Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322732881> ?p ?o ?g. }
- W4322732881 abstract "Abstract The aim of this work is to develop a fully non-ergodic ground motion prediction model (FNE-GMPM) that provides functional forms (ffs) for each of the world's 13 regions. The ffs are derived from machine learning of a given dataset drawn from four databases: namely RESIF-RAP, ESM, RESORCE and NGA-West2. The machine learning is performed by the neural network approach whose explanatory parameters are the moment magnitude (MW), Joyner-Boore distance RJB, average shear wave velocity in the first 30 m VS30, nature of VS30: (measured or estimated) and the focal Depth. The model thus established estimates the ground motion intensity measures (GMIMs). These GMIMs are represented by the peak ground acceleration and the peak ground velocity PGA and PGV respectively, as well as 5 as well as the 13-period acceleration pseudo-spectra from 0.04 to 4.00 s (PSA) for a damping of 5%. The 13 regions subject of this study are distinguished by their epistemic uncertainties. The aleatory variability is considered as heteroscedastic depending on the MW and the RJB. The consideration of the non-ergodicity of the heteroscedasticity and using the machine learning approach leads to a significant reduction of the aleatory variability. This work makes it possible to have strong motions for regions with low and moderate seismicity, such as metropolitan France." @default.
- W4322732881 created "2023-03-03" @default.
- W4322732881 creator A5003937726 @default.
- W4322732881 creator A5056906889 @default.
- W4322732881 date "2023-03-01" @default.
- W4322732881 modified "2023-10-14" @default.
- W4322732881 title "Fully Data-driven non-ergodic ground-motion prediction models for low to moderate seismicity areas: using RESIF-RAP, ESM, RESORCE and NGA-West 2 data." @default.
- W4322732881 cites W1963599076 @default.
- W4322732881 cites W1968842194 @default.
- W4322732881 cites W2010135069 @default.
- W4322732881 cites W2015367089 @default.
- W4322732881 cites W2020805690 @default.
- W4322732881 cites W2040928062 @default.
- W4322732881 cites W2044767255 @default.
- W4322732881 cites W2057238428 @default.
- W4322732881 cites W2070058129 @default.
- W4322732881 cites W2070815373 @default.
- W4322732881 cites W2073636678 @default.
- W4322732881 cites W2083679811 @default.
- W4322732881 cites W2093662202 @default.
- W4322732881 cites W2098904504 @default.
- W4322732881 cites W2105544002 @default.
- W4322732881 cites W2110893990 @default.
- W4322732881 cites W2111959010 @default.
- W4322732881 cites W2112057493 @default.
- W4322732881 cites W2118672673 @default.
- W4322732881 cites W2125290000 @default.
- W4322732881 cites W2131440233 @default.
- W4322732881 cites W2134181680 @default.
- W4322732881 cites W2143591903 @default.
- W4322732881 cites W2155491877 @default.
- W4322732881 cites W2157264936 @default.
- W4322732881 cites W2157501616 @default.
- W4322732881 cites W2170794289 @default.
- W4322732881 cites W2238059368 @default.
- W4322732881 cites W2259454917 @default.
- W4322732881 cites W2278590165 @default.
- W4322732881 cites W2286620461 @default.
- W4322732881 cites W2323482506 @default.
- W4322732881 cites W2337156690 @default.
- W4322732881 cites W2346523903 @default.
- W4322732881 cites W2414568040 @default.
- W4322732881 cites W2530305015 @default.
- W4322732881 cites W2555280217 @default.
- W4322732881 cites W2619958382 @default.
- W4322732881 cites W2626957249 @default.
- W4322732881 cites W2739400205 @default.
- W4322732881 cites W2774052065 @default.
- W4322732881 cites W2781476712 @default.
- W4322732881 cites W2800955236 @default.
- W4322732881 cites W2889709890 @default.
- W4322732881 cites W2912047487 @default.
- W4322732881 cites W2963331664 @default.
- W4322732881 cites W2966071425 @default.
- W4322732881 cites W2969531188 @default.
- W4322732881 cites W3005574988 @default.
- W4322732881 cites W3022091598 @default.
- W4322732881 cites W3080679805 @default.
- W4322732881 cites W3135340103 @default.
- W4322732881 cites W3140093025 @default.
- W4322732881 cites W3195347541 @default.
- W4322732881 cites W3213134243 @default.
- W4322732881 cites W4225602498 @default.
- W4322732881 cites W4230769750 @default.
- W4322732881 cites W4246979340 @default.
- W4322732881 cites W4252781840 @default.
- W4322732881 cites W4255606466 @default.
- W4322732881 cites W4287072892 @default.
- W4322732881 cites W76800738 @default.
- W4322732881 doi "https://doi.org/10.21203/rs.3.rs-2605538/v1" @default.
- W4322732881 hasPublicationYear "2023" @default.
- W4322732881 type Work @default.
- W4322732881 citedByCount "0" @default.
- W4322732881 crossrefType "posted-content" @default.
- W4322732881 hasAuthorship W4322732881A5003937726 @default.
- W4322732881 hasAuthorship W4322732881A5056906889 @default.
- W4322732881 hasBestOaLocation W43227328811 @default.
- W4322732881 hasConcept C101104100 @default.
- W4322732881 hasConcept C105795698 @default.
- W4322732881 hasConcept C117896860 @default.
- W4322732881 hasConcept C121332964 @default.
- W4322732881 hasConcept C122044880 @default.
- W4322732881 hasConcept C127313418 @default.
- W4322732881 hasConcept C13280743 @default.
- W4322732881 hasConcept C134306372 @default.
- W4322732881 hasConcept C146849305 @default.
- W4322732881 hasConcept C154945302 @default.
- W4322732881 hasConcept C159877910 @default.
- W4322732881 hasConcept C165205528 @default.
- W4322732881 hasConcept C2988284105 @default.
- W4322732881 hasConcept C33923547 @default.
- W4322732881 hasConcept C41008148 @default.
- W4322732881 hasConcept C50644808 @default.
- W4322732881 hasConcept C60486960 @default.
- W4322732881 hasConcept C74650414 @default.
- W4322732881 hasConcept C83176761 @default.
- W4322732881 hasConceptScore W4322732881C101104100 @default.
- W4322732881 hasConceptScore W4322732881C105795698 @default.
- W4322732881 hasConceptScore W4322732881C117896860 @default.
- W4322732881 hasConceptScore W4322732881C121332964 @default.