Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322736066> ?p ?o ?g. }
- W4322736066 abstract "Abstract A sentence is more than the sum of its words: its meaning depends on how they combine with one another. The brain mechanisms underlying such semantic composition remain poorly understood. To shed light on the neural vector code underlying semantic composition, we introduce two hypotheses: First, the intrinsic dimensionality of the space of neural representations should increase as a sentence unfolds, paralleling the growing complexity of its semantic representation, and second, this progressive integration should be reflected in ramping and sentence-final signals. To test these predictions, we designed a dataset of closely matched normal and Jabberwocky sentences (composed of meaningless pseudo words) and displayed them to deep language models and to 11 human participants (5 men and 6 women) monitored with simultaneous magneto-encephalography and intracranial electro-encephalography. In both deep language models and electrophysiological data, we found that representational dimensionality was higher for meaningful sentences than Jabberwocky. Furthermore, multivariate decoding of normal versus Jabberwocky confirmed three dynamic patterns: (i) a phasic pattern following each word, peaking in temporal and parietal areas, (ii) a ramping pattern, characteristic of bilateral inferior and middle frontal gyri, and (iii) a sentence-final pattern in left superior frontal gyrus and right orbitofrontal cortex. These results provide a first glimpse into the neural geometry of semantic integration and constrain the search for a neural code of linguistic composition. Significance statement Starting from general linguistic concepts, we make two sets of predictions in neural signals evoked by reading multi-word sentences. First, the intrinsic dimensionality of the representation should grow with additional meaningful words. Second, the neural dynamics should exhibit signatures of encoding, maintaining, and resolving semantic composition. We successfully validated these hypotheses in deep Neural Language Models, artificial neural networks trained on text and performing very well on many Natural Language Processing tasks. Then, using a unique combination of magnetoencephalography and intracranial electrodes, we recorded high-resolution brain data from human participants while they read a controlled set of sentences. Time-resolved dimensionality analysis showed increasing dimensionality with meaning, and multivariate decoding allowed us to isolate the three dynamical patterns we had hypothesized." @default.
- W4322736066 created "2023-03-03" @default.
- W4322736066 creator A5009850507 @default.
- W4322736066 creator A5015992287 @default.
- W4322736066 creator A5020958105 @default.
- W4322736066 creator A5028116010 @default.
- W4322736066 creator A5033265682 @default.
- W4322736066 creator A5056821038 @default.
- W4322736066 creator A5058689702 @default.
- W4322736066 creator A5059697591 @default.
- W4322736066 creator A5075892407 @default.
- W4322736066 creator A5079741140 @default.
- W4322736066 date "2023-03-01" @default.
- W4322736066 modified "2023-10-18" @default.
- W4322736066 title "Dimensionality and ramping: Signatures of sentence integration in the dynamics of brains and deep language models" @default.
- W4322736066 cites W1515959949 @default.
- W4322736066 cites W1567277581 @default.
- W4322736066 cites W1661597557 @default.
- W4322736066 cites W1968426398 @default.
- W4322736066 cites W1969634671 @default.
- W4322736066 cites W1974803102 @default.
- W4322736066 cites W1988812422 @default.
- W4322736066 cites W1995672192 @default.
- W4322736066 cites W2013494846 @default.
- W4322736066 cites W2021032538 @default.
- W4322736066 cites W2024579655 @default.
- W4322736066 cites W2030831236 @default.
- W4322736066 cites W2037287753 @default.
- W4322736066 cites W2037504148 @default.
- W4322736066 cites W2040739363 @default.
- W4322736066 cites W2042003045 @default.
- W4322736066 cites W2046557060 @default.
- W4322736066 cites W2049647213 @default.
- W4322736066 cites W2064675550 @default.
- W4322736066 cites W2077723500 @default.
- W4322736066 cites W2079092292 @default.
- W4322736066 cites W2082842332 @default.
- W4322736066 cites W2083893109 @default.
- W4322736066 cites W2091507471 @default.
- W4322736066 cites W2101135654 @default.
- W4322736066 cites W2107265154 @default.
- W4322736066 cites W2107627409 @default.
- W4322736066 cites W2121393656 @default.
- W4322736066 cites W2123480151 @default.
- W4322736066 cites W2129753520 @default.
- W4322736066 cites W2149158842 @default.
- W4322736066 cites W2153076044 @default.
- W4322736066 cites W2156663106 @default.
- W4322736066 cites W2157108417 @default.
- W4322736066 cites W2157306293 @default.
- W4322736066 cites W2158113120 @default.
- W4322736066 cites W2164051460 @default.
- W4322736066 cites W2169918686 @default.
- W4322736066 cites W2177117292 @default.
- W4322736066 cites W2332216477 @default.
- W4322736066 cites W2473065265 @default.
- W4322736066 cites W2526072446 @default.
- W4322736066 cites W2528108497 @default.
- W4322736066 cites W2606837722 @default.
- W4322736066 cites W2621961142 @default.
- W4322736066 cites W2760196906 @default.
- W4322736066 cites W2766284800 @default.
- W4322736066 cites W2775133029 @default.
- W4322736066 cites W2795349950 @default.
- W4322736066 cites W2805003518 @default.
- W4322736066 cites W2892053535 @default.
- W4322736066 cites W2905623858 @default.
- W4322736066 cites W2946417913 @default.
- W4322736066 cites W2948947170 @default.
- W4322736066 cites W2950514661 @default.
- W4322736066 cites W2952481429 @default.
- W4322736066 cites W2955321733 @default.
- W4322736066 cites W2960869174 @default.
- W4322736066 cites W2972324944 @default.
- W4322736066 cites W2978450937 @default.
- W4322736066 cites W2978950289 @default.
- W4322736066 cites W2983769105 @default.
- W4322736066 cites W2986154550 @default.
- W4322736066 cites W2994855366 @default.
- W4322736066 cites W2997938465 @default.
- W4322736066 cites W3009009806 @default.
- W4322736066 cites W3013369344 @default.
- W4322736066 cites W3019166713 @default.
- W4322736066 cites W3022734720 @default.
- W4322736066 cites W3038027488 @default.
- W4322736066 cites W3039556919 @default.
- W4322736066 cites W3041725488 @default.
- W4322736066 cites W3088418428 @default.
- W4322736066 cites W3102539921 @default.
- W4322736066 cites W3107793556 @default.
- W4322736066 cites W3118485687 @default.
- W4322736066 cites W3136636939 @default.
- W4322736066 cites W3142226569 @default.
- W4322736066 cites W3154773080 @default.
- W4322736066 cites W3178228406 @default.
- W4322736066 cites W3194734757 @default.
- W4322736066 cites W3210923133 @default.
- W4322736066 cites W3217436924 @default.
- W4322736066 cites W4211115742 @default.
- W4322736066 cites W4214909510 @default.