Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322745802> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4322745802 endingPage "012016" @default.
- W4322745802 startingPage "012016" @default.
- W4322745802 abstract "Abstract The power system contains a variety of uncertainties of different types of sources and loads, as well as random contingencies. Under these uncertainties and rapidly changing operating conditions, traditional rule-based methods cannot dynamically handle short-term voltage instability. To alleviate this situation, this paper proposes a novel power system emergency control scheme using a data-driven method, which combines edge-conditioned graph convolutional networks and deep reinforcement learning. The edge-conditioned graph convolutional network is utilized to extract the characteristics from not only power system nodes but also transmission lines. Deep reinforcement learning is introduced to perform load shedding actions, so as to guarantee the safety and stability of the electric power system. The IEEE 39-bus network is utilized for simulations to validate the effectiveness of the proposed data-driven method. The outcomes demonstrate the proposed method can generate a superior strategy in a number of the short-term voltage instability(STVI) circumstances." @default.
- W4322745802 created "2023-03-03" @default.
- W4322745802 creator A5016253469 @default.
- W4322745802 creator A5029357187 @default.
- W4322745802 creator A5044181742 @default.
- W4322745802 creator A5050231409 @default.
- W4322745802 creator A5056689755 @default.
- W4322745802 creator A5087592842 @default.
- W4322745802 creator A5090694142 @default.
- W4322745802 date "2023-02-01" @default.
- W4322745802 modified "2023-10-12" @default.
- W4322745802 title "A Data-Driven Method for Power System Emergency Control to Improve Short-Term Voltage Stability" @default.
- W4322745802 cites W1436439024 @default.
- W4322745802 cites W1997431413 @default.
- W4322745802 cites W1997691810 @default.
- W4322745802 cites W2003247152 @default.
- W4322745802 cites W2160045034 @default.
- W4322745802 cites W2896284417 @default.
- W4322745802 cites W2966492573 @default.
- W4322745802 cites W3166539331 @default.
- W4322745802 cites W3211223618 @default.
- W4322745802 doi "https://doi.org/10.1088/1742-6596/2433/1/012016" @default.
- W4322745802 hasPublicationYear "2023" @default.
- W4322745802 type Work @default.
- W4322745802 citedByCount "0" @default.
- W4322745802 crossrefType "journal-article" @default.
- W4322745802 hasAuthorship W4322745802A5016253469 @default.
- W4322745802 hasAuthorship W4322745802A5029357187 @default.
- W4322745802 hasAuthorship W4322745802A5044181742 @default.
- W4322745802 hasAuthorship W4322745802A5050231409 @default.
- W4322745802 hasAuthorship W4322745802A5056689755 @default.
- W4322745802 hasAuthorship W4322745802A5087592842 @default.
- W4322745802 hasAuthorship W4322745802A5090694142 @default.
- W4322745802 hasBestOaLocation W43227458021 @default.
- W4322745802 hasConcept C119599485 @default.
- W4322745802 hasConcept C121332964 @default.
- W4322745802 hasConcept C127413603 @default.
- W4322745802 hasConcept C132525143 @default.
- W4322745802 hasConcept C154945302 @default.
- W4322745802 hasConcept C162307627 @default.
- W4322745802 hasConcept C163258240 @default.
- W4322745802 hasConcept C165801399 @default.
- W4322745802 hasConcept C2775924081 @default.
- W4322745802 hasConcept C41008148 @default.
- W4322745802 hasConcept C47446073 @default.
- W4322745802 hasConcept C61797465 @default.
- W4322745802 hasConcept C62520636 @default.
- W4322745802 hasConcept C79403827 @default.
- W4322745802 hasConcept C80444323 @default.
- W4322745802 hasConcept C89227174 @default.
- W4322745802 hasConcept C97541855 @default.
- W4322745802 hasConceptScore W4322745802C119599485 @default.
- W4322745802 hasConceptScore W4322745802C121332964 @default.
- W4322745802 hasConceptScore W4322745802C127413603 @default.
- W4322745802 hasConceptScore W4322745802C132525143 @default.
- W4322745802 hasConceptScore W4322745802C154945302 @default.
- W4322745802 hasConceptScore W4322745802C162307627 @default.
- W4322745802 hasConceptScore W4322745802C163258240 @default.
- W4322745802 hasConceptScore W4322745802C165801399 @default.
- W4322745802 hasConceptScore W4322745802C2775924081 @default.
- W4322745802 hasConceptScore W4322745802C41008148 @default.
- W4322745802 hasConceptScore W4322745802C47446073 @default.
- W4322745802 hasConceptScore W4322745802C61797465 @default.
- W4322745802 hasConceptScore W4322745802C62520636 @default.
- W4322745802 hasConceptScore W4322745802C79403827 @default.
- W4322745802 hasConceptScore W4322745802C80444323 @default.
- W4322745802 hasConceptScore W4322745802C89227174 @default.
- W4322745802 hasConceptScore W4322745802C97541855 @default.
- W4322745802 hasIssue "1" @default.
- W4322745802 hasLocation W43227458021 @default.
- W4322745802 hasOpenAccess W4322745802 @default.
- W4322745802 hasPrimaryLocation W43227458021 @default.
- W4322745802 hasRelatedWork W2130556575 @default.
- W4322745802 hasRelatedWork W260766989 @default.
- W4322745802 hasRelatedWork W2959276766 @default.
- W4322745802 hasRelatedWork W3074294383 @default.
- W4322745802 hasRelatedWork W3111983280 @default.
- W4322745802 hasRelatedWork W3139193008 @default.
- W4322745802 hasRelatedWork W3164468573 @default.
- W4322745802 hasRelatedWork W4206669594 @default.
- W4322745802 hasRelatedWork W4295941380 @default.
- W4322745802 hasRelatedWork W2340695655 @default.
- W4322745802 hasVolume "2433" @default.
- W4322745802 isParatext "false" @default.
- W4322745802 isRetracted "false" @default.
- W4322745802 workType "article" @default.