Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322751331> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4322751331 abstract "With the development of science and technology and the accumulation of medical big data, machine learning algorithms are increasingly being used in clinical settings, and it will become particularly important to be able to efficiently and accurately obtain valuable information from these large-scale data, which also brings unprecedented opportunities and challenges to the field of Chinese medicine, driving the development of clinical and scientific research in Chinese medicine. At present, machine learning algorithms commonly used in the field of Chinese medicine include random forest, support vector machine, logistic regression and convolutional neural network, etc. This paper will focus on the application of random forests and convolutional neural networks in the field of Chinese medicine." @default.
- W4322751331 created "2023-03-03" @default.
- W4322751331 creator A5016622484 @default.
- W4322751331 creator A5017733002 @default.
- W4322751331 creator A5017883616 @default.
- W4322751331 creator A5023363049 @default.
- W4322751331 creator A5025837949 @default.
- W4322751331 creator A5053218462 @default.
- W4322751331 creator A5067184719 @default.
- W4322751331 creator A5069049010 @default.
- W4322751331 date "2022-10-01" @default.
- W4322751331 modified "2023-09-29" @default.
- W4322751331 title "Application and Research of Machine Learning in Traditional Chinese Medicine" @default.
- W4322751331 cites W2137613347 @default.
- W4322751331 cites W2560137036 @default.
- W4322751331 cites W2789804734 @default.
- W4322751331 cites W2923867015 @default.
- W4322751331 cites W3006070838 @default.
- W4322751331 cites W3011139747 @default.
- W4322751331 cites W3110894137 @default.
- W4322751331 cites W3134238933 @default.
- W4322751331 cites W3143098515 @default.
- W4322751331 cites W3177729494 @default.
- W4322751331 cites W3210930694 @default.
- W4322751331 cites W4220984360 @default.
- W4322751331 cites W4229448366 @default.
- W4322751331 cites W4280640314 @default.
- W4322751331 doi "https://doi.org/10.1109/3cbit57391.2022.00079" @default.
- W4322751331 hasPublicationYear "2022" @default.
- W4322751331 type Work @default.
- W4322751331 citedByCount "0" @default.
- W4322751331 crossrefType "proceedings-article" @default.
- W4322751331 hasAuthorship W4322751331A5016622484 @default.
- W4322751331 hasAuthorship W4322751331A5017733002 @default.
- W4322751331 hasAuthorship W4322751331A5017883616 @default.
- W4322751331 hasAuthorship W4322751331A5023363049 @default.
- W4322751331 hasAuthorship W4322751331A5025837949 @default.
- W4322751331 hasAuthorship W4322751331A5053218462 @default.
- W4322751331 hasAuthorship W4322751331A5067184719 @default.
- W4322751331 hasAuthorship W4322751331A5069049010 @default.
- W4322751331 hasConcept C108583219 @default.
- W4322751331 hasConcept C119857082 @default.
- W4322751331 hasConcept C120665830 @default.
- W4322751331 hasConcept C121332964 @default.
- W4322751331 hasConcept C12267149 @default.
- W4322751331 hasConcept C124101348 @default.
- W4322751331 hasConcept C154945302 @default.
- W4322751331 hasConcept C169258074 @default.
- W4322751331 hasConcept C192209626 @default.
- W4322751331 hasConcept C202444582 @default.
- W4322751331 hasConcept C2522767166 @default.
- W4322751331 hasConcept C2778755073 @default.
- W4322751331 hasConcept C33923547 @default.
- W4322751331 hasConcept C41008148 @default.
- W4322751331 hasConcept C50644808 @default.
- W4322751331 hasConcept C62520636 @default.
- W4322751331 hasConcept C75684735 @default.
- W4322751331 hasConcept C81363708 @default.
- W4322751331 hasConcept C9652623 @default.
- W4322751331 hasConceptScore W4322751331C108583219 @default.
- W4322751331 hasConceptScore W4322751331C119857082 @default.
- W4322751331 hasConceptScore W4322751331C120665830 @default.
- W4322751331 hasConceptScore W4322751331C121332964 @default.
- W4322751331 hasConceptScore W4322751331C12267149 @default.
- W4322751331 hasConceptScore W4322751331C124101348 @default.
- W4322751331 hasConceptScore W4322751331C154945302 @default.
- W4322751331 hasConceptScore W4322751331C169258074 @default.
- W4322751331 hasConceptScore W4322751331C192209626 @default.
- W4322751331 hasConceptScore W4322751331C202444582 @default.
- W4322751331 hasConceptScore W4322751331C2522767166 @default.
- W4322751331 hasConceptScore W4322751331C2778755073 @default.
- W4322751331 hasConceptScore W4322751331C33923547 @default.
- W4322751331 hasConceptScore W4322751331C41008148 @default.
- W4322751331 hasConceptScore W4322751331C50644808 @default.
- W4322751331 hasConceptScore W4322751331C62520636 @default.
- W4322751331 hasConceptScore W4322751331C75684735 @default.
- W4322751331 hasConceptScore W4322751331C81363708 @default.
- W4322751331 hasConceptScore W4322751331C9652623 @default.
- W4322751331 hasFunder F4320321001 @default.
- W4322751331 hasFunder F4320322866 @default.
- W4322751331 hasFunder F4320327827 @default.
- W4322751331 hasLocation W43227513311 @default.
- W4322751331 hasOpenAccess W4322751331 @default.
- W4322751331 hasPrimaryLocation W43227513311 @default.
- W4322751331 hasRelatedWork W2979979539 @default.
- W4322751331 hasRelatedWork W3014300295 @default.
- W4322751331 hasRelatedWork W3136979370 @default.
- W4322751331 hasRelatedWork W3195168932 @default.
- W4322751331 hasRelatedWork W4205958290 @default.
- W4322751331 hasRelatedWork W4281616679 @default.
- W4322751331 hasRelatedWork W4293567684 @default.
- W4322751331 hasRelatedWork W4311106074 @default.
- W4322751331 hasRelatedWork W4320483443 @default.
- W4322751331 hasRelatedWork W4322727400 @default.
- W4322751331 isParatext "false" @default.
- W4322751331 isRetracted "false" @default.
- W4322751331 workType "article" @default.