Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322758091> ?p ?o ?g. }
- W4322758091 abstract "Applied behavioral analysis (ABA) is regarded as the gold standard treatment for autism spectrum disorder (ASD) and has the potential to improve outcomes for patients with ASD. It can be delivered at different intensities, which are classified as comprehensive or focused treatment approaches. Comprehensive ABA targets multiple developmental domains and involves 20-40 h/week of treatment. Focused ABA targets individual behaviors and typically involves 10-20 h/week of treatment. Determining the appropriate treatment intensity involves patient assessment by trained therapists, however, the final determination is highly subjective and lacks a standardized approach. In our study, we examined the ability of a machine learning (ML) prediction model to classify which treatment intensity would be most suited individually for patients with ASD who are undergoing ABA treatment.Retrospective data from 359 patients diagnosed with ASD were analyzed and included in the training and testing of an ML model for predicting comprehensive or focused treatment for individuals undergoing ABA treatment. Data inputs included demographics, schooling, behavior, skills, and patient goals. A gradient-boosted tree ensemble method, XGBoost, was used to develop the prediction model, which was then compared against a standard of care comparator encompassing features specified by the Behavior Analyst Certification Board treatment guidelines. Prediction model performance was assessed via area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).The prediction model achieved excellent performance for classifying patients in the comprehensive versus focused treatment groups (AUROC: 0.895; 95% CI 0.811-0.962) and outperformed the standard of care comparator (AUROC 0.767; 95% CI 0.629-0.891). The prediction model also achieved sensitivity of 0.789, specificity of 0.808, PPV of 0.6, and NPV of 0.913. Out of 71 patients whose data were employed to test the prediction model, only 14 misclassifications occurred. A majority of misclassifications (n = 10) indicated comprehensive ABA treatment for patients that had focused ABA treatment as the ground truth, therefore still providing a therapeutic benefit. The three most important features contributing to the model's predictions were bathing ability, age, and hours per week of past ABA treatment.This research demonstrates that the ML prediction model performs well to classify appropriate ABA treatment plan intensity using readily available patient data. This may aid with standardizing the process for determining appropriate ABA treatments, which can facilitate initiation of the most appropriate treatment intensity for patients with ASD and improve resource allocation." @default.
- W4322758091 created "2023-03-03" @default.
- W4322758091 creator A5012509821 @default.
- W4322758091 creator A5023008666 @default.
- W4322758091 creator A5031045321 @default.
- W4322758091 creator A5035889390 @default.
- W4322758091 creator A5041122594 @default.
- W4322758091 creator A5054119515 @default.
- W4322758091 creator A5057498904 @default.
- W4322758091 creator A5084954833 @default.
- W4322758091 creator A5090742751 @default.
- W4322758091 date "2023-03-02" @default.
- W4322758091 modified "2023-10-06" @default.
- W4322758091 title "Machine learning determination of applied behavioral analysis treatment plan type" @default.
- W4322758091 cites W1246166351 @default.
- W4322758091 cites W1964724464 @default.
- W4322758091 cites W1973402429 @default.
- W4322758091 cites W1978219074 @default.
- W4322758091 cites W2005913941 @default.
- W4322758091 cites W2058829441 @default.
- W4322758091 cites W2069698478 @default.
- W4322758091 cites W2070493638 @default.
- W4322758091 cites W2072765140 @default.
- W4322758091 cites W2097132700 @default.
- W4322758091 cites W2106462800 @default.
- W4322758091 cites W2119379172 @default.
- W4322758091 cites W2142325401 @default.
- W4322758091 cites W2146888763 @default.
- W4322758091 cites W2156078552 @default.
- W4322758091 cites W2164551677 @default.
- W4322758091 cites W2265660607 @default.
- W4322758091 cites W2304213695 @default.
- W4322758091 cites W2339747551 @default.
- W4322758091 cites W2416912299 @default.
- W4322758091 cites W2754186564 @default.
- W4322758091 cites W2765228684 @default.
- W4322758091 cites W2786635213 @default.
- W4322758091 cites W2795904604 @default.
- W4322758091 cites W2886989735 @default.
- W4322758091 cites W2902092143 @default.
- W4322758091 cites W2917871264 @default.
- W4322758091 cites W2935865601 @default.
- W4322758091 cites W2940553617 @default.
- W4322758091 cites W2994761045 @default.
- W4322758091 cites W3003859748 @default.
- W4322758091 cites W3009228838 @default.
- W4322758091 cites W3011205123 @default.
- W4322758091 cites W3016568881 @default.
- W4322758091 cites W3027179734 @default.
- W4322758091 cites W3102476541 @default.
- W4322758091 cites W3162368023 @default.
- W4322758091 cites W3163529572 @default.
- W4322758091 cites W3170657538 @default.
- W4322758091 cites W3171251861 @default.
- W4322758091 cites W3202914280 @default.
- W4322758091 cites W3206201152 @default.
- W4322758091 cites W3216660278 @default.
- W4322758091 cites W4200429009 @default.
- W4322758091 cites W4214849391 @default.
- W4322758091 cites W4220728818 @default.
- W4322758091 cites W4221002271 @default.
- W4322758091 cites W4229007573 @default.
- W4322758091 cites W4236619680 @default.
- W4322758091 cites W4250664506 @default.
- W4322758091 cites W4287510447 @default.
- W4322758091 doi "https://doi.org/10.1186/s40708-023-00186-8" @default.
- W4322758091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36862316" @default.
- W4322758091 hasPublicationYear "2023" @default.
- W4322758091 type Work @default.
- W4322758091 citedByCount "2" @default.
- W4322758091 countsByYear W43227580912023 @default.
- W4322758091 crossrefType "journal-article" @default.
- W4322758091 hasAuthorship W4322758091A5012509821 @default.
- W4322758091 hasAuthorship W4322758091A5023008666 @default.
- W4322758091 hasAuthorship W4322758091A5031045321 @default.
- W4322758091 hasAuthorship W4322758091A5035889390 @default.
- W4322758091 hasAuthorship W4322758091A5041122594 @default.
- W4322758091 hasAuthorship W4322758091A5054119515 @default.
- W4322758091 hasAuthorship W4322758091A5057498904 @default.
- W4322758091 hasAuthorship W4322758091A5084954833 @default.
- W4322758091 hasAuthorship W4322758091A5090742751 @default.
- W4322758091 hasBestOaLocation W43227580911 @default.
- W4322758091 hasConcept C118552586 @default.
- W4322758091 hasConcept C119857082 @default.
- W4322758091 hasConcept C126322002 @default.
- W4322758091 hasConcept C154945302 @default.
- W4322758091 hasConcept C15744967 @default.
- W4322758091 hasConcept C205778803 @default.
- W4322758091 hasConcept C2777976975 @default.
- W4322758091 hasConcept C2778538070 @default.
- W4322758091 hasConcept C40993552 @default.
- W4322758091 hasConcept C41008148 @default.
- W4322758091 hasConcept C58471807 @default.
- W4322758091 hasConcept C71924100 @default.
- W4322758091 hasConcept C84525736 @default.
- W4322758091 hasConceptScore W4322758091C118552586 @default.
- W4322758091 hasConceptScore W4322758091C119857082 @default.
- W4322758091 hasConceptScore W4322758091C126322002 @default.
- W4322758091 hasConceptScore W4322758091C154945302 @default.
- W4322758091 hasConceptScore W4322758091C15744967 @default.