Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322761566> ?p ?o ?g. }
- W4322761566 endingPage "102559" @default.
- W4322761566 startingPage "102559" @default.
- W4322761566 abstract "Generative molecular design for drug discovery and development has seen a recent resurgence promising to improve the efficiency of the design-make-test-analyse cycle; by computationally exploring much larger chemical spaces than traditional virtual screening techniques. However, most generative models thus far have only utilized small-molecule information to train and condition de novo molecule generators. Here, we instead focus on recent approaches that incorporate protein structure into de novo molecule optimization in an attempt to maximize the predicted on-target binding affinity of generated molecules. We summarize these structure integration principles into either distribution learning or goal-directed optimization and for each case whether the approach is protein structure-explicit or implicit with respect to the generative model. We discuss recent approaches in the context of this categorization and provide our perspective on the future direction of the field." @default.
- W4322761566 created "2023-03-03" @default.
- W4322761566 creator A5026643759 @default.
- W4322761566 creator A5057675580 @default.
- W4322761566 creator A5064256420 @default.
- W4322761566 date "2023-04-01" @default.
- W4322761566 modified "2023-09-30" @default.
- W4322761566 title "Integrating structure-based approaches in generative molecular design" @default.
- W4322761566 cites W1757990252 @default.
- W4322761566 cites W1968319881 @default.
- W4322761566 cites W1979453000 @default.
- W4322761566 cites W1980725180 @default.
- W4322761566 cites W1980969309 @default.
- W4322761566 cites W1981076832 @default.
- W4322761566 cites W1983304433 @default.
- W4322761566 cites W1985588649 @default.
- W4322761566 cites W2012353583 @default.
- W4322761566 cites W2013291622 @default.
- W4322761566 cites W2028629022 @default.
- W4322761566 cites W2044444984 @default.
- W4322761566 cites W2048822589 @default.
- W4322761566 cites W2050456292 @default.
- W4322761566 cites W2051060071 @default.
- W4322761566 cites W2092285329 @default.
- W4322761566 cites W2096740407 @default.
- W4322761566 cites W2098432123 @default.
- W4322761566 cites W2108389384 @default.
- W4322761566 cites W2114704115 @default.
- W4322761566 cites W2130479394 @default.
- W4322761566 cites W2146465875 @default.
- W4322761566 cites W2882976371 @default.
- W4322761566 cites W2902812092 @default.
- W4322761566 cites W2914542247 @default.
- W4322761566 cites W2945551948 @default.
- W4322761566 cites W2969980075 @default.
- W4322761566 cites W3011847211 @default.
- W4322761566 cites W3012585755 @default.
- W4322761566 cites W3014501695 @default.
- W4322761566 cites W3029978182 @default.
- W4322761566 cites W3043611443 @default.
- W4322761566 cites W3082411326 @default.
- W4322761566 cites W3090915092 @default.
- W4322761566 cites W3098269892 @default.
- W4322761566 cites W3111168552 @default.
- W4322761566 cites W3116865743 @default.
- W4322761566 cites W3119872582 @default.
- W4322761566 cites W3120361527 @default.
- W4322761566 cites W3121082297 @default.
- W4322761566 cites W3165171933 @default.
- W4322761566 cites W3177828909 @default.
- W4322761566 cites W3186179742 @default.
- W4322761566 cites W3195161349 @default.
- W4322761566 cites W3198869316 @default.
- W4322761566 cites W3200806939 @default.
- W4322761566 cites W3205590463 @default.
- W4322761566 cites W3207446095 @default.
- W4322761566 cites W3208515103 @default.
- W4322761566 cites W3209416355 @default.
- W4322761566 cites W3209764902 @default.
- W4322761566 cites W3210833421 @default.
- W4322761566 cites W3212543990 @default.
- W4322761566 cites W4200127861 @default.
- W4322761566 cites W4200150297 @default.
- W4322761566 cites W4200200013 @default.
- W4322761566 cites W4245443308 @default.
- W4322761566 cites W4283219703 @default.
- W4322761566 cites W4283270512 @default.
- W4322761566 cites W4300861533 @default.
- W4322761566 doi "https://doi.org/10.1016/j.sbi.2023.102559" @default.
- W4322761566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36870277" @default.
- W4322761566 hasPublicationYear "2023" @default.
- W4322761566 type Work @default.
- W4322761566 citedByCount "6" @default.
- W4322761566 countsByYear W43227615662023 @default.
- W4322761566 crossrefType "journal-article" @default.
- W4322761566 hasAuthorship W4322761566A5026643759 @default.
- W4322761566 hasAuthorship W4322761566A5057675580 @default.
- W4322761566 hasAuthorship W4322761566A5064256420 @default.
- W4322761566 hasBestOaLocation W43227615661 @default.
- W4322761566 hasConcept C103697762 @default.
- W4322761566 hasConcept C119857082 @default.
- W4322761566 hasConcept C12713177 @default.
- W4322761566 hasConcept C127413603 @default.
- W4322761566 hasConcept C151730666 @default.
- W4322761566 hasConcept C154945302 @default.
- W4322761566 hasConcept C167966045 @default.
- W4322761566 hasConcept C176217482 @default.
- W4322761566 hasConcept C184408114 @default.
- W4322761566 hasConcept C21547014 @default.
- W4322761566 hasConcept C2779343474 @default.
- W4322761566 hasConcept C39890363 @default.
- W4322761566 hasConcept C41008148 @default.
- W4322761566 hasConcept C60644358 @default.
- W4322761566 hasConcept C70721500 @default.
- W4322761566 hasConcept C74187038 @default.
- W4322761566 hasConcept C86803240 @default.
- W4322761566 hasConcept C94124525 @default.
- W4322761566 hasConceptScore W4322761566C103697762 @default.