Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322765593> ?p ?o ?g. }
- W4322765593 endingPage "100126" @default.
- W4322765593 startingPage "100126" @default.
- W4322765593 abstract "Large eddy simulation of a flameless combustion furnace is discussed with comparison against experimental measurements of the mean thermochemical quantities. The focus is on the introduction in flow simulations of complex chemistry through the training of neural networks, in order to simulate the oxidation of a gaseous fuel representative of recycled gases available in the steel industry. A canonical problem, based on a non-adiabatic stochastic micro-mixing model and combined with a detailed description of chemistry, is setup to train the neural networks prior to the flow simulation. For these networks to be predictive, the thermochemical composition space is decomposed into sub-domains from a partitioning algorithm. A neural network is trained in every sub-domain to return the increments in time of the most influential thermochemical quantities, from the knowledge of temperature and species mass fractions solved with the flow. Implemented in an open-source low-Mach number fluid mechanics code, the neural networks complex chemistry is shown to be very efficient in terms of CPU time, with an overhead of only 60% compared to the non-reactive multi-species simulation of the furnace." @default.
- W4322765593 created "2023-03-03" @default.
- W4322765593 creator A5013147387 @default.
- W4322765593 creator A5018531445 @default.
- W4322765593 creator A5043076483 @default.
- W4322765593 creator A5046258133 @default.
- W4322765593 creator A5055718593 @default.
- W4322765593 date "2023-06-01" @default.
- W4322765593 modified "2023-09-26" @default.
- W4322765593 title "Large-Eddy Simulation of flameless combustion with neural-network driven chemistry" @default.
- W4322765593 cites W1858382243 @default.
- W4322765593 cites W1983859570 @default.
- W4322765593 cites W1985160514 @default.
- W4322765593 cites W2014114558 @default.
- W4322765593 cites W2025388305 @default.
- W4322765593 cites W2028638885 @default.
- W4322765593 cites W2030901274 @default.
- W4322765593 cites W2036470899 @default.
- W4322765593 cites W2041054636 @default.
- W4322765593 cites W2041837258 @default.
- W4322765593 cites W2047650739 @default.
- W4322765593 cites W2049069130 @default.
- W4322765593 cites W2066534865 @default.
- W4322765593 cites W2069663402 @default.
- W4322765593 cites W2074447412 @default.
- W4322765593 cites W2082151437 @default.
- W4322765593 cites W2083236322 @default.
- W4322765593 cites W2084825136 @default.
- W4322765593 cites W2160955944 @default.
- W4322765593 cites W2168795429 @default.
- W4322765593 cites W2524793038 @default.
- W4322765593 cites W2612077975 @default.
- W4322765593 cites W2740711119 @default.
- W4322765593 cites W2754422330 @default.
- W4322765593 cites W2756120977 @default.
- W4322765593 cites W2767890792 @default.
- W4322765593 cites W2887641760 @default.
- W4322765593 cites W2890014223 @default.
- W4322765593 cites W2894621151 @default.
- W4322765593 cites W2898515927 @default.
- W4322765593 cites W2906362494 @default.
- W4322765593 cites W2933486321 @default.
- W4322765593 cites W2934144656 @default.
- W4322765593 cites W2940953274 @default.
- W4322765593 cites W2951888346 @default.
- W4322765593 cites W2970854586 @default.
- W4322765593 cites W2980618876 @default.
- W4322765593 cites W3033994219 @default.
- W4322765593 cites W3034495304 @default.
- W4322765593 cites W3035928882 @default.
- W4322765593 cites W3035985072 @default.
- W4322765593 cites W3039009362 @default.
- W4322765593 cites W3081583436 @default.
- W4322765593 cites W3111863724 @default.
- W4322765593 cites W3119868305 @default.
- W4322765593 cites W3125887158 @default.
- W4322765593 cites W3195824403 @default.
- W4322765593 cites W4210957300 @default.
- W4322765593 cites W4224444473 @default.
- W4322765593 doi "https://doi.org/10.1016/j.jaecs.2023.100126" @default.
- W4322765593 hasPublicationYear "2023" @default.
- W4322765593 type Work @default.
- W4322765593 citedByCount "0" @default.
- W4322765593 crossrefType "journal-article" @default.
- W4322765593 hasAuthorship W4322765593A5013147387 @default.
- W4322765593 hasAuthorship W4322765593A5018531445 @default.
- W4322765593 hasAuthorship W4322765593A5043076483 @default.
- W4322765593 hasAuthorship W4322765593A5046258133 @default.
- W4322765593 hasAuthorship W4322765593A5055718593 @default.
- W4322765593 hasBestOaLocation W43227655931 @default.
- W4322765593 hasConcept C105923489 @default.
- W4322765593 hasConcept C109663097 @default.
- W4322765593 hasConcept C119857082 @default.
- W4322765593 hasConcept C121332964 @default.
- W4322765593 hasConcept C121448008 @default.
- W4322765593 hasConcept C127413603 @default.
- W4322765593 hasConcept C138777275 @default.
- W4322765593 hasConcept C178790620 @default.
- W4322765593 hasConcept C185592680 @default.
- W4322765593 hasConcept C196558001 @default.
- W4322765593 hasConcept C204030448 @default.
- W4322765593 hasConcept C21880701 @default.
- W4322765593 hasConcept C38349280 @default.
- W4322765593 hasConcept C41008148 @default.
- W4322765593 hasConcept C50644808 @default.
- W4322765593 hasConcept C57879066 @default.
- W4322765593 hasConcept C62520636 @default.
- W4322765593 hasConcept C97355855 @default.
- W4322765593 hasConceptScore W4322765593C105923489 @default.
- W4322765593 hasConceptScore W4322765593C109663097 @default.
- W4322765593 hasConceptScore W4322765593C119857082 @default.
- W4322765593 hasConceptScore W4322765593C121332964 @default.
- W4322765593 hasConceptScore W4322765593C121448008 @default.
- W4322765593 hasConceptScore W4322765593C127413603 @default.
- W4322765593 hasConceptScore W4322765593C138777275 @default.
- W4322765593 hasConceptScore W4322765593C178790620 @default.
- W4322765593 hasConceptScore W4322765593C185592680 @default.
- W4322765593 hasConceptScore W4322765593C196558001 @default.