Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322766222> ?p ?o ?g. }
- W4322766222 endingPage "177" @default.
- W4322766222 startingPage "161" @default.
- W4322766222 abstract "In recent years, self-supervised learning methods based on mutual information maximization have achieved remarkable success on graph data tasks. However, most of them heavily rely on a large number of negative samples, which is computationally expensive. These methods also fail to extract the semantic cluster information of the data. To overcome these problems, we propose a novel self-supervised approach called Graph Representation Learing via Redundancy Reduction (GRRR) to learn node representations based on the redundancy-reduction principle. The proposed GRRR preserves as much topological information of the graph as possible, and minimizes the redundancy of representation in terms of node instance and semantic cluster information. Specifically, we first design three graph data augmentation strategies to construct two augmented views. Then, to filter the redundant information in each augmented view, we propose the self-redundancy reduction module which implements the structural reconstruction. Finally, we propose the joint redundancy reduction module to further filter undesirable information via a cross-view approach. It preserves the most essential instance features and semantic cluster information by maximizing the agreement across different views not only on node instance features but also on cluster assignments. Results on several benchmark datasets show that GRRR outperforms state-of-the-art methods in downstream node classification, link prediction, and node clustering tasks." @default.
- W4322766222 created "2023-03-03" @default.
- W4322766222 creator A5000432967 @default.
- W4322766222 creator A5019977901 @default.
- W4322766222 creator A5023176500 @default.
- W4322766222 creator A5050852420 @default.
- W4322766222 creator A5056653368 @default.
- W4322766222 creator A5063845247 @default.
- W4322766222 date "2023-05-01" @default.
- W4322766222 modified "2023-10-16" @default.
- W4322766222 title "Graph representation learning via redundancy reduction" @default.
- W4322766222 cites W1677182931 @default.
- W4322766222 cites W2027001671 @default.
- W4322766222 cites W2053186076 @default.
- W4322766222 cites W2090891622 @default.
- W4322766222 cites W2108323654 @default.
- W4322766222 cites W2130055919 @default.
- W4322766222 cites W2142535891 @default.
- W4322766222 cites W2153959628 @default.
- W4322766222 cites W2155653793 @default.
- W4322766222 cites W2168627253 @default.
- W4322766222 cites W2466939964 @default.
- W4322766222 cites W2788284887 @default.
- W4322766222 cites W2962756421 @default.
- W4322766222 cites W2963707260 @default.
- W4322766222 cites W2972209102 @default.
- W4322766222 cites W2990500698 @default.
- W4322766222 cites W3012816161 @default.
- W4322766222 cites W3035524453 @default.
- W4322766222 cites W3049694790 @default.
- W4322766222 cites W3087124270 @default.
- W4322766222 cites W3089428626 @default.
- W4322766222 cites W3092339997 @default.
- W4322766222 cites W3100405722 @default.
- W4322766222 cites W3104097132 @default.
- W4322766222 cites W3105705953 @default.
- W4322766222 cites W3117907911 @default.
- W4322766222 cites W3155886566 @default.
- W4322766222 cites W3156636935 @default.
- W4322766222 cites W3158147183 @default.
- W4322766222 cites W3164473340 @default.
- W4322766222 cites W3168925038 @default.
- W4322766222 cites W3175362188 @default.
- W4322766222 cites W3190214286 @default.
- W4322766222 cites W4214884149 @default.
- W4322766222 doi "https://doi.org/10.1016/j.neucom.2023.02.062" @default.
- W4322766222 hasPublicationYear "2023" @default.
- W4322766222 type Work @default.
- W4322766222 citedByCount "0" @default.
- W4322766222 crossrefType "journal-article" @default.
- W4322766222 hasAuthorship W4322766222A5000432967 @default.
- W4322766222 hasAuthorship W4322766222A5019977901 @default.
- W4322766222 hasAuthorship W4322766222A5023176500 @default.
- W4322766222 hasAuthorship W4322766222A5050852420 @default.
- W4322766222 hasAuthorship W4322766222A5056653368 @default.
- W4322766222 hasAuthorship W4322766222A5063845247 @default.
- W4322766222 hasConcept C105611402 @default.
- W4322766222 hasConcept C111919701 @default.
- W4322766222 hasConcept C124101348 @default.
- W4322766222 hasConcept C126255220 @default.
- W4322766222 hasConcept C132525143 @default.
- W4322766222 hasConcept C152124472 @default.
- W4322766222 hasConcept C153180895 @default.
- W4322766222 hasConcept C154945302 @default.
- W4322766222 hasConcept C2776330181 @default.
- W4322766222 hasConcept C33923547 @default.
- W4322766222 hasConcept C41008148 @default.
- W4322766222 hasConcept C73555534 @default.
- W4322766222 hasConcept C80444323 @default.
- W4322766222 hasConceptScore W4322766222C105611402 @default.
- W4322766222 hasConceptScore W4322766222C111919701 @default.
- W4322766222 hasConceptScore W4322766222C124101348 @default.
- W4322766222 hasConceptScore W4322766222C126255220 @default.
- W4322766222 hasConceptScore W4322766222C132525143 @default.
- W4322766222 hasConceptScore W4322766222C152124472 @default.
- W4322766222 hasConceptScore W4322766222C153180895 @default.
- W4322766222 hasConceptScore W4322766222C154945302 @default.
- W4322766222 hasConceptScore W4322766222C2776330181 @default.
- W4322766222 hasConceptScore W4322766222C33923547 @default.
- W4322766222 hasConceptScore W4322766222C41008148 @default.
- W4322766222 hasConceptScore W4322766222C73555534 @default.
- W4322766222 hasConceptScore W4322766222C80444323 @default.
- W4322766222 hasFunder F4320321001 @default.
- W4322766222 hasFunder F4320323993 @default.
- W4322766222 hasLocation W43227662221 @default.
- W4322766222 hasOpenAccess W4322766222 @default.
- W4322766222 hasPrimaryLocation W43227662221 @default.
- W4322766222 hasRelatedWork W1966869234 @default.
- W4322766222 hasRelatedWork W2080529643 @default.
- W4322766222 hasRelatedWork W2110877857 @default.
- W4322766222 hasRelatedWork W2188393372 @default.
- W4322766222 hasRelatedWork W2391601053 @default.
- W4322766222 hasRelatedWork W3089862173 @default.
- W4322766222 hasRelatedWork W3097084607 @default.
- W4322766222 hasRelatedWork W3213967242 @default.
- W4322766222 hasRelatedWork W4254289163 @default.
- W4322766222 hasRelatedWork W4296504239 @default.
- W4322766222 hasVolume "533" @default.