Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322767394> ?p ?o ?g. }
- W4322767394 endingPage "521" @default.
- W4322767394 startingPage "501" @default.
- W4322767394 abstract "Abstract This paper investigates the performance of five supervised machine learning algorithms, including support vector machine (SVM), logistic regression (LogR), decision tree (DT), multiple perceptron neural network (MLP-NN), and K-nearest neighbours (KNN) for predicting the water quality index (WQI) and water quality class (WQC) in the coastal aquifer of the Gaza Strip. A total of 2,448 samples of groundwater were collected from the coastal aquifer of the Gaza Strip, and various physical and chemical parameters were measured to calculate the WQI based on weight. The prediction accuracy was evaluated using five error measures. The results showed that MLP-NN outperformed other models in terms of accuracy with an R value of 0.9945–0.9948, compared with 0.9897–0.9880 for SVM, 0.9784–0.9800 for LogR, 0.9464–0.9247 for KNN, and 0.9301–0.9064 for DT. SVM classification showed that 78.32% of the study area fell under poor to unsuitable water categories, while the north part of the region had good to excellent water quality. Total dissolved solids (TDS) was the most important parameter in WQI predictions while and were the least important. MLP-NN and SVM were the most accurate models for the WQI prediction and classification in the Gaza coastal aquifer." @default.
- W4322767394 created "2023-03-03" @default.
- W4322767394 creator A5002818300 @default.
- W4322767394 creator A5003834573 @default.
- W4322767394 creator A5021209992 @default.
- W4322767394 creator A5058748175 @default.
- W4322767394 date "2023-03-01" @default.
- W4322767394 modified "2023-09-26" @default.
- W4322767394 title "Prediction of groundwater quality index in the Gaza coastal aquifer using supervised machine learning techniques" @default.
- W4322767394 cites W1967211424 @default.
- W4322767394 cites W1974230032 @default.
- W4322767394 cites W1984509278 @default.
- W4322767394 cites W1986229244 @default.
- W4322767394 cites W1991032810 @default.
- W4322767394 cites W2028305260 @default.
- W4322767394 cites W2033923757 @default.
- W4322767394 cites W2042407016 @default.
- W4322767394 cites W2058998445 @default.
- W4322767394 cites W2091552194 @default.
- W4322767394 cites W2129235930 @default.
- W4322767394 cites W2507405931 @default.
- W4322767394 cites W2593451653 @default.
- W4322767394 cites W2597900621 @default.
- W4322767394 cites W2615724410 @default.
- W4322767394 cites W2760220824 @default.
- W4322767394 cites W2810397275 @default.
- W4322767394 cites W2897196768 @default.
- W4322767394 cites W2898791292 @default.
- W4322767394 cites W2912130581 @default.
- W4322767394 cites W2913478351 @default.
- W4322767394 cites W2945889143 @default.
- W4322767394 cites W2970261710 @default.
- W4322767394 cites W2980658109 @default.
- W4322767394 cites W2981586399 @default.
- W4322767394 cites W2991097100 @default.
- W4322767394 cites W2992553448 @default.
- W4322767394 cites W2997133808 @default.
- W4322767394 cites W2999171751 @default.
- W4322767394 cites W2999729702 @default.
- W4322767394 cites W3006101764 @default.
- W4322767394 cites W3006671182 @default.
- W4322767394 cites W3010593855 @default.
- W4322767394 cites W3010986668 @default.
- W4322767394 cites W3013586319 @default.
- W4322767394 cites W3014301940 @default.
- W4322767394 cites W3016350595 @default.
- W4322767394 cites W3023646194 @default.
- W4322767394 cites W3025835050 @default.
- W4322767394 cites W3040436455 @default.
- W4322767394 cites W3089275591 @default.
- W4322767394 cites W3092301554 @default.
- W4322767394 cites W3093998899 @default.
- W4322767394 cites W3104233831 @default.
- W4322767394 cites W3113372098 @default.
- W4322767394 cites W3134605838 @default.
- W4322767394 cites W3136883316 @default.
- W4322767394 cites W3158601697 @default.
- W4322767394 cites W3167568636 @default.
- W4322767394 cites W3174089940 @default.
- W4322767394 cites W3198110527 @default.
- W4322767394 cites W3211647702 @default.
- W4322767394 doi "https://doi.org/10.2166/wpt.2023.028" @default.
- W4322767394 hasPublicationYear "2023" @default.
- W4322767394 type Work @default.
- W4322767394 citedByCount "0" @default.
- W4322767394 crossrefType "journal-article" @default.
- W4322767394 hasAuthorship W4322767394A5002818300 @default.
- W4322767394 hasAuthorship W4322767394A5003834573 @default.
- W4322767394 hasAuthorship W4322767394A5021209992 @default.
- W4322767394 hasAuthorship W4322767394A5058748175 @default.
- W4322767394 hasBestOaLocation W43227673941 @default.
- W4322767394 hasConcept C105795698 @default.
- W4322767394 hasConcept C119857082 @default.
- W4322767394 hasConcept C12267149 @default.
- W4322767394 hasConcept C127313418 @default.
- W4322767394 hasConcept C154945302 @default.
- W4322767394 hasConcept C179717631 @default.
- W4322767394 hasConcept C187320778 @default.
- W4322767394 hasConcept C18903297 @default.
- W4322767394 hasConcept C2780797713 @default.
- W4322767394 hasConcept C33923547 @default.
- W4322767394 hasConcept C39432304 @default.
- W4322767394 hasConcept C41008148 @default.
- W4322767394 hasConcept C50644808 @default.
- W4322767394 hasConcept C75622301 @default.
- W4322767394 hasConcept C76177295 @default.
- W4322767394 hasConcept C84525736 @default.
- W4322767394 hasConcept C86803240 @default.
- W4322767394 hasConceptScore W4322767394C105795698 @default.
- W4322767394 hasConceptScore W4322767394C119857082 @default.
- W4322767394 hasConceptScore W4322767394C12267149 @default.
- W4322767394 hasConceptScore W4322767394C127313418 @default.
- W4322767394 hasConceptScore W4322767394C154945302 @default.
- W4322767394 hasConceptScore W4322767394C179717631 @default.
- W4322767394 hasConceptScore W4322767394C187320778 @default.
- W4322767394 hasConceptScore W4322767394C18903297 @default.
- W4322767394 hasConceptScore W4322767394C2780797713 @default.
- W4322767394 hasConceptScore W4322767394C33923547 @default.