Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322770088> ?p ?o ?g. }
- W4322770088 endingPage "737" @default.
- W4322770088 startingPage "737" @default.
- W4322770088 abstract "Applying conventional methods for prediction of environmental impacts in agricultural production is not actually applicable because they usually ignore other aspects such as useful energy and economic consequence. As such, this article evaluates intelligent models for exergoenvironmental damage and emissions social cost (ESC) for mushroom production in Isfahan province, Iran, by three machine learning (ML) methods, namely adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and support vector regression (SVR). Accordingly, environmental life cycle damages, cumulative exergy demand, and ESC are examined by the ReCiPe2016 method for 100 tons of mushroom production after data collection by interview. Exergoenvironmental results reveal that, in human health and ecosystems, direct emissions, and resources and exergy categories, diesel fuel and compost are the main hotspots. Economic analysis also shows that total ESC is about 1035$. Results of ML models indicate that ANN with a 6-8-3 structure is the optimum topology for forecasting outputs. Moreover, a two-level structure of ANFIS has weak results for prediction in comparison with ANN. However, support vector regression (SVR) with an absolute average relative error (AARE) (%) between 0.85 and 1.03 (based on specific unit), a coefficient of determination (R2) between 0.989 and 0.993 (based on specific unit), and a root mean square error (RMSE) between 0.003 and 0.011 (based on specific unit) is selected as the best ML model. It is concluded that ML models can furnish comprehensive and applicable exergoenvironmental-economical assessment of agricultural products." @default.
- W4322770088 created "2023-03-03" @default.
- W4322770088 creator A5004602666 @default.
- W4322770088 creator A5009537783 @default.
- W4322770088 creator A5038147533 @default.
- W4322770088 creator A5056117468 @default.
- W4322770088 creator A5079050870 @default.
- W4322770088 creator A5081904302 @default.
- W4322770088 date "2023-03-01" @default.
- W4322770088 modified "2023-09-30" @default.
- W4322770088 title "Machine Learning Models of Exergoenvironmental Damages and Emissions Social Cost for Mushroom Production" @default.
- W4322770088 cites W1535028519 @default.
- W4322770088 cites W1608109057 @default.
- W4322770088 cites W1924934019 @default.
- W4322770088 cites W1964047682 @default.
- W4322770088 cites W1964357740 @default.
- W4322770088 cites W1965317430 @default.
- W4322770088 cites W1965846962 @default.
- W4322770088 cites W1973256729 @default.
- W4322770088 cites W1973838149 @default.
- W4322770088 cites W1975135587 @default.
- W4322770088 cites W1982447826 @default.
- W4322770088 cites W1991626857 @default.
- W4322770088 cites W1996614738 @default.
- W4322770088 cites W2001379895 @default.
- W4322770088 cites W2002462188 @default.
- W4322770088 cites W2005990124 @default.
- W4322770088 cites W2011115330 @default.
- W4322770088 cites W2031267246 @default.
- W4322770088 cites W2041042386 @default.
- W4322770088 cites W2043258198 @default.
- W4322770088 cites W2045256553 @default.
- W4322770088 cites W2049093559 @default.
- W4322770088 cites W2056373682 @default.
- W4322770088 cites W2077553701 @default.
- W4322770088 cites W2082976291 @default.
- W4322770088 cites W2083280785 @default.
- W4322770088 cites W2083324435 @default.
- W4322770088 cites W2086774950 @default.
- W4322770088 cites W2092801713 @default.
- W4322770088 cites W2093608477 @default.
- W4322770088 cites W2123098628 @default.
- W4322770088 cites W2129477063 @default.
- W4322770088 cites W2160446199 @default.
- W4322770088 cites W2236623899 @default.
- W4322770088 cites W2282992258 @default.
- W4322770088 cites W2287485150 @default.
- W4322770088 cites W2413196224 @default.
- W4322770088 cites W2500054982 @default.
- W4322770088 cites W2519977120 @default.
- W4322770088 cites W2551780164 @default.
- W4322770088 cites W2552387151 @default.
- W4322770088 cites W2554067985 @default.
- W4322770088 cites W2554451542 @default.
- W4322770088 cites W2559680241 @default.
- W4322770088 cites W2564630286 @default.
- W4322770088 cites W2574206571 @default.
- W4322770088 cites W2585334182 @default.
- W4322770088 cites W2610950873 @default.
- W4322770088 cites W2612044217 @default.
- W4322770088 cites W2755728985 @default.
- W4322770088 cites W2778695992 @default.
- W4322770088 cites W2791081216 @default.
- W4322770088 cites W2792367117 @default.
- W4322770088 cites W2891406408 @default.
- W4322770088 cites W2901072891 @default.
- W4322770088 cites W2902064445 @default.
- W4322770088 cites W2912648744 @default.
- W4322770088 cites W2912791380 @default.
- W4322770088 cites W2913307270 @default.
- W4322770088 cites W2914304120 @default.
- W4322770088 cites W2929602570 @default.
- W4322770088 cites W2932492920 @default.
- W4322770088 cites W2936742444 @default.
- W4322770088 cites W2978676659 @default.
- W4322770088 cites W2996453026 @default.
- W4322770088 cites W3012313592 @default.
- W4322770088 cites W3015579889 @default.
- W4322770088 cites W3033674502 @default.
- W4322770088 cites W3039042543 @default.
- W4322770088 cites W3040330580 @default.
- W4322770088 cites W3042689619 @default.
- W4322770088 cites W3080975371 @default.
- W4322770088 cites W3084501275 @default.
- W4322770088 cites W3090598665 @default.
- W4322770088 cites W3095012937 @default.
- W4322770088 cites W3095278500 @default.
- W4322770088 cites W3104650256 @default.
- W4322770088 cites W3112500776 @default.
- W4322770088 cites W3114978292 @default.
- W4322770088 cites W3115976834 @default.
- W4322770088 cites W3127725769 @default.
- W4322770088 cites W3127988635 @default.
- W4322770088 cites W3133173095 @default.
- W4322770088 cites W4221046498 @default.
- W4322770088 doi "https://doi.org/10.3390/agronomy13030737" @default.
- W4322770088 hasPublicationYear "2023" @default.
- W4322770088 type Work @default.