Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322773295> ?p ?o ?g. }
- W4322773295 abstract "Background Personality psychology studies personality and its variation among individuals and is an essential branch of psychology. In recent years, machine learning research related to personality assessment has started to focus on the online environment and showed outstanding performance in personality assessment. However, the aspects of the personality of these prediction models measure remain unclear because few studies focus on the interpretability of personality prediction models. The objective of this study is to develop and validate a machine learning model with domain knowledge introduced to enhance accuracy and improve interpretability. Methods Study participants were recruited via an online experiment platform. After excluding unqualified participants and downloading the Weibo posts of eligible participants, we used six psycholinguistic and mental health-related lexicons to extract textual features. Then the predictive personality model was developed using the multi-objective extra trees method based on 3,411 pairs of social media expression and personality trait scores. Subsequently, the prediction model’s validity and reliability were evaluated, and each lexicon’s feature importance was calculated. Finally, the interpretability of the machine learning model was discussed. Results The features from Culture Value Dictionary were found to be the most important predictors. The fivefold cross-validation results regarding the prediction model for personality traits ranged between 0.44 and 0.48 ( p < 0.001). The correlation coefficients of five personality traits between the two “split-half” datasets data ranged from 0.84 to 0.88 ( p < 0.001). Moreover, the model performed well in terms of contractual validity. Conclusion By introducing domain knowledge to the development of a machine learning model, this study not only ensures the reliability and validity of the prediction model but also improves the interpretability of the machine learning method. The study helps explain aspects of personality measured by such prediction models and finds a link between personality and mental health. Our research also has positive implications regarding the combination of machine learning approaches and domain knowledge in the field of psychiatry and its applications to mental health." @default.
- W4322773295 created "2023-03-03" @default.
- W4322773295 creator A5039833572 @default.
- W4322773295 creator A5041096560 @default.
- W4322773295 creator A5044268573 @default.
- W4322773295 creator A5047954931 @default.
- W4322773295 creator A5069740725 @default.
- W4322773295 creator A5079365151 @default.
- W4322773295 creator A5082740924 @default.
- W4322773295 creator A5087383712 @default.
- W4322773295 date "2023-03-02" @default.
- W4322773295 modified "2023-10-01" @default.
- W4322773295 title "How social media expression can reveal personality" @default.
- W4322773295 cites W1546405367 @default.
- W4322773295 cites W1779879527 @default.
- W4322773295 cites W1788597577 @default.
- W4322773295 cites W1915748026 @default.
- W4322773295 cites W1964072494 @default.
- W4322773295 cites W1971183512 @default.
- W4322773295 cites W1986024033 @default.
- W4322773295 cites W1986603749 @default.
- W4322773295 cites W1989538527 @default.
- W4322773295 cites W2002715976 @default.
- W4322773295 cites W2033672841 @default.
- W4322773295 cites W2038054630 @default.
- W4322773295 cites W2052077007 @default.
- W4322773295 cites W2056132907 @default.
- W4322773295 cites W2071589850 @default.
- W4322773295 cites W2087283494 @default.
- W4322773295 cites W2099465598 @default.
- W4322773295 cites W2118251535 @default.
- W4322773295 cites W2119432837 @default.
- W4322773295 cites W2119595472 @default.
- W4322773295 cites W2125337786 @default.
- W4322773295 cites W2142449003 @default.
- W4322773295 cites W2143131965 @default.
- W4322773295 cites W2147074457 @default.
- W4322773295 cites W2147377023 @default.
- W4322773295 cites W2156086612 @default.
- W4322773295 cites W2161766952 @default.
- W4322773295 cites W2170816550 @default.
- W4322773295 cites W2204272062 @default.
- W4322773295 cites W2299277274 @default.
- W4322773295 cites W2332038321 @default.
- W4322773295 cites W2334239751 @default.
- W4322773295 cites W2339881364 @default.
- W4322773295 cites W2465653549 @default.
- W4322773295 cites W2480710602 @default.
- W4322773295 cites W2532126343 @default.
- W4322773295 cites W2561305034 @default.
- W4322773295 cites W2738444075 @default.
- W4322773295 cites W2752633749 @default.
- W4322773295 cites W2778210192 @default.
- W4322773295 cites W2803872820 @default.
- W4322773295 cites W2896018557 @default.
- W4322773295 cites W2932009903 @default.
- W4322773295 cites W2982116138 @default.
- W4322773295 cites W3011642264 @default.
- W4322773295 cites W3039191224 @default.
- W4322773295 cites W3094636375 @default.
- W4322773295 cites W3099328588 @default.
- W4322773295 cites W3101876289 @default.
- W4322773295 cites W3115405163 @default.
- W4322773295 cites W3122013538 @default.
- W4322773295 cites W3155926581 @default.
- W4322773295 cites W3170803195 @default.
- W4322773295 cites W3175475730 @default.
- W4322773295 cites W3216936753 @default.
- W4322773295 cites W4225925871 @default.
- W4322773295 cites W4256695798 @default.
- W4322773295 cites W4292223424 @default.
- W4322773295 cites W95939850 @default.
- W4322773295 cites W960634190 @default.
- W4322773295 doi "https://doi.org/10.3389/fpsyt.2023.1052844" @default.
- W4322773295 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36937737" @default.
- W4322773295 hasPublicationYear "2023" @default.
- W4322773295 type Work @default.
- W4322773295 citedByCount "0" @default.
- W4322773295 crossrefType "journal-article" @default.
- W4322773295 hasAuthorship W4322773295A5039833572 @default.
- W4322773295 hasAuthorship W4322773295A5041096560 @default.
- W4322773295 hasAuthorship W4322773295A5044268573 @default.
- W4322773295 hasAuthorship W4322773295A5047954931 @default.
- W4322773295 hasAuthorship W4322773295A5069740725 @default.
- W4322773295 hasAuthorship W4322773295A5079365151 @default.
- W4322773295 hasAuthorship W4322773295A5082740924 @default.
- W4322773295 hasAuthorship W4322773295A5087383712 @default.
- W4322773295 hasBestOaLocation W43227732951 @default.
- W4322773295 hasConcept C106934330 @default.
- W4322773295 hasConcept C119857082 @default.
- W4322773295 hasConcept C136764020 @default.
- W4322773295 hasConcept C150286290 @default.
- W4322773295 hasConcept C154945302 @default.
- W4322773295 hasConcept C15744967 @default.
- W4322773295 hasConcept C187288502 @default.
- W4322773295 hasConcept C199360897 @default.
- W4322773295 hasConcept C24663603 @default.
- W4322773295 hasConcept C2781067378 @default.
- W4322773295 hasConcept C2865642 @default.
- W4322773295 hasConcept C41008148 @default.