Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322773721> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322773721 abstract "Abstract For a positive integer k , a group G is said to be totally k -closed if for each set $$Omega $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Ω</mml:mi> </mml:math> upon which G acts faithfully, G is the largest subgroup of $$textrm{Sym}(Omega )$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mtext>Sym</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> that leaves invariant each of the G -orbits in the induced action on $$Omega times cdots times Omega =Omega ^k$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>×</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>Ω</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> </mml:math> . Each finite group G is totally | G |-closed, and k ( G ) denotes the least integer k such that G is totally k -closed. We address the question of determining the closure number k ( G ) for finite simple groups G . Prior to our work it was known that $$k(G)=2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> for cyclic groups of prime order and for precisely six of the sporadic simple groups, and that $$k(G)geqslant 3$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> <mml:mo>⩾</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> for all other finite simple groups. We determine the value for the alternating groups, namely $$k(A_n)=n-1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . In addition, for all simple groups G , other than alternating groups and classical groups, we show that $$k(G)leqslant 7$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> <mml:mo>⩽</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> . Finally, if G is a finite simple classical group with natural module of dimension n , we show that $$k(G)leqslant n+2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> <mml:mo>⩽</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> if $$n geqslant 14$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>14</mml:mn> </mml:mrow> </mml:math> , and $$k(G) leqslant lfloor n/3 + 12 rfloor $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> <mml:mo>⩽</mml:mo> <mml:mo>⌊</mml:mo> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> <mml:mn>12</mml:mn> <mml:mo>⌋</mml:mo> </mml:mrow> </mml:math> otherwise, with smaller bounds achieved by certain families of groups. This is achieved by determining a uniform upper bound (depending on n and the type of G ) on the base sizes of the primitive actions of G , based on known bounds for specific actions. We pose several open problems aimed at completing the determination of the closure numbers for finite simple groups." @default.
- W4322773721 created "2023-03-03" @default.
- W4322773721 creator A5043525348 @default.
- W4322773721 creator A5071017819 @default.
- W4322773721 creator A5051756142 @default.
- W4322773721 date "2023-03-02" @default.
- W4322773721 modified "2023-10-14" @default.
- W4322773721 title "Total closure for permutation actions of finite nonabelian simple groups" @default.
- W4322773721 cites W132983735 @default.
- W4322773721 cites W1493654001 @default.
- W4322773721 cites W1981477383 @default.
- W4322773721 cites W2005998611 @default.
- W4322773721 cites W2008730668 @default.
- W4322773721 cites W2011908469 @default.
- W4322773721 cites W2023681235 @default.
- W4322773721 cites W2044883905 @default.
- W4322773721 cites W2051698212 @default.
- W4322773721 cites W2091293447 @default.
- W4322773721 cites W2147813260 @default.
- W4322773721 cites W2148757468 @default.
- W4322773721 cites W2164314258 @default.
- W4322773721 cites W2962764284 @default.
- W4322773721 cites W2963294419 @default.
- W4322773721 cites W3089089815 @default.
- W4322773721 cites W3100822884 @default.
- W4322773721 cites W3138752743 @default.
- W4322773721 cites W3168843909 @default.
- W4322773721 cites W3190933940 @default.
- W4322773721 cites W3194640193 @default.
- W4322773721 cites W4238570289 @default.
- W4322773721 cites W656473322 @default.
- W4322773721 doi "https://doi.org/10.1007/s00605-023-01822-5" @default.
- W4322773721 hasPublicationYear "2023" @default.
- W4322773721 type Work @default.
- W4322773721 citedByCount "0" @default.
- W4322773721 crossrefType "journal-article" @default.
- W4322773721 hasAuthorship W4322773721A5043525348 @default.
- W4322773721 hasAuthorship W4322773721A5051756142 @default.
- W4322773721 hasAuthorship W4322773721A5071017819 @default.
- W4322773721 hasBestOaLocation W43227737211 @default.
- W4322773721 hasConcept C11413529 @default.
- W4322773721 hasConcept C41008148 @default.
- W4322773721 hasConceptScore W4322773721C11413529 @default.
- W4322773721 hasConceptScore W4322773721C41008148 @default.
- W4322773721 hasFunder F4320320278 @default.
- W4322773721 hasFunder F4320334704 @default.
- W4322773721 hasLocation W43227737211 @default.
- W4322773721 hasLocation W43227737212 @default.
- W4322773721 hasLocation W43227737213 @default.
- W4322773721 hasOpenAccess W4322773721 @default.
- W4322773721 hasPrimaryLocation W43227737211 @default.
- W4322773721 hasRelatedWork W2051487156 @default.
- W4322773721 hasRelatedWork W2052122378 @default.
- W4322773721 hasRelatedWork W2053286651 @default.
- W4322773721 hasRelatedWork W2073681303 @default.
- W4322773721 hasRelatedWork W2317200988 @default.
- W4322773721 hasRelatedWork W2544423928 @default.
- W4322773721 hasRelatedWork W2947381795 @default.
- W4322773721 hasRelatedWork W2181413294 @default.
- W4322773721 hasRelatedWork W2181743346 @default.
- W4322773721 hasRelatedWork W2187401768 @default.
- W4322773721 isParatext "false" @default.
- W4322773721 isRetracted "false" @default.
- W4322773721 workType "article" @default.