Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322775126> ?p ?o ?g. }
- W4322775126 abstract "Abstract Hafnium oxide-based ferroelectrics have been extensively studied because of their existing ferroelectricity, even in ultra-thin film form. However, studying the weak response from ultra-thin film requires improved measurement sensitivity. In general, resonance-enhanced piezoresponse force microscopy (PFM) has been used to characterize ferroelectricity by fitting a simple harmonic oscillation model with the resonance spectrum. However, an iterative approach, such as traditional least squares (LS) fitting, is sensitive to noise and can result in the misunderstanding of weak responses. In this study, we developed the deep neural network (DNN) hybrid with deep denoising autoencoder (DDA) and principal component analysis (PCA) to extract resonance information. The DDA/PCA-DNN improves the PFM sensitivity down to 0.3 pm, allowing measurement of weak piezoresponse with low excitation voltage in 10-nm-thick Hf 0.5 Zr 0.5 O 2 thin films. Our hybrid approaches could provide more chances to explore the low piezoresponse of the ultra-thin ferroelectrics and could be applied to other microscopic techniques." @default.
- W4322775126 created "2023-03-03" @default.
- W4322775126 creator A5001834469 @default.
- W4322775126 creator A5014570892 @default.
- W4322775126 creator A5016517520 @default.
- W4322775126 creator A5053503462 @default.
- W4322775126 creator A5073200956 @default.
- W4322775126 creator A5084949021 @default.
- W4322775126 date "2023-02-28" @default.
- W4322775126 modified "2023-10-18" @default.
- W4322775126 title "Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy" @default.
- W4322775126 cites W1625170149 @default.
- W4322775126 cites W1965267507 @default.
- W4322775126 cites W1972842014 @default.
- W4322775126 cites W1992679962 @default.
- W4322775126 cites W1998511210 @default.
- W4322775126 cites W2006346728 @default.
- W4322775126 cites W2068399321 @default.
- W4322775126 cites W2084474052 @default.
- W4322775126 cites W2100495367 @default.
- W4322775126 cites W2128677332 @default.
- W4322775126 cites W2130312436 @default.
- W4322775126 cites W2334220755 @default.
- W4322775126 cites W2766948296 @default.
- W4322775126 cites W2883609630 @default.
- W4322775126 cites W2916096286 @default.
- W4322775126 cites W2949797269 @default.
- W4322775126 cites W2968923792 @default.
- W4322775126 cites W2971339051 @default.
- W4322775126 cites W2981466594 @default.
- W4322775126 cites W3005233684 @default.
- W4322775126 cites W3020220880 @default.
- W4322775126 cites W3045847105 @default.
- W4322775126 cites W3120860846 @default.
- W4322775126 cites W3163510368 @default.
- W4322775126 cites W3164406833 @default.
- W4322775126 cites W3164764927 @default.
- W4322775126 cites W3193928281 @default.
- W4322775126 cites W3194957302 @default.
- W4322775126 cites W3207644427 @default.
- W4322775126 cites W3212566665 @default.
- W4322775126 cites W4200493839 @default.
- W4322775126 cites W4221025951 @default.
- W4322775126 cites W4229055935 @default.
- W4322775126 cites W4280523393 @default.
- W4322775126 cites W4283451325 @default.
- W4322775126 cites W4283690158 @default.
- W4322775126 doi "https://doi.org/10.1038/s41524-023-00982-0" @default.
- W4322775126 hasPublicationYear "2023" @default.
- W4322775126 type Work @default.
- W4322775126 citedByCount "4" @default.
- W4322775126 countsByYear W43227751262023 @default.
- W4322775126 crossrefType "journal-article" @default.
- W4322775126 hasAuthorship W4322775126A5001834469 @default.
- W4322775126 hasAuthorship W4322775126A5014570892 @default.
- W4322775126 hasAuthorship W4322775126A5016517520 @default.
- W4322775126 hasAuthorship W4322775126A5053503462 @default.
- W4322775126 hasAuthorship W4322775126A5073200956 @default.
- W4322775126 hasAuthorship W4322775126A5084949021 @default.
- W4322775126 hasBestOaLocation W43227751261 @default.
- W4322775126 hasConcept C127413603 @default.
- W4322775126 hasConcept C133386390 @default.
- W4322775126 hasConcept C154945302 @default.
- W4322775126 hasConcept C171250308 @default.
- W4322775126 hasConcept C172436747 @default.
- W4322775126 hasConcept C185592680 @default.
- W4322775126 hasConcept C19067145 @default.
- W4322775126 hasConcept C192562407 @default.
- W4322775126 hasConcept C21200559 @default.
- W4322775126 hasConcept C24326235 @default.
- W4322775126 hasConcept C2778439541 @default.
- W4322775126 hasConcept C41008148 @default.
- W4322775126 hasConcept C49040817 @default.
- W4322775126 hasConcept C50644808 @default.
- W4322775126 hasConcept C55493867 @default.
- W4322775126 hasConcept C79090758 @default.
- W4322775126 hasConceptScore W4322775126C127413603 @default.
- W4322775126 hasConceptScore W4322775126C133386390 @default.
- W4322775126 hasConceptScore W4322775126C154945302 @default.
- W4322775126 hasConceptScore W4322775126C171250308 @default.
- W4322775126 hasConceptScore W4322775126C172436747 @default.
- W4322775126 hasConceptScore W4322775126C185592680 @default.
- W4322775126 hasConceptScore W4322775126C19067145 @default.
- W4322775126 hasConceptScore W4322775126C192562407 @default.
- W4322775126 hasConceptScore W4322775126C21200559 @default.
- W4322775126 hasConceptScore W4322775126C24326235 @default.
- W4322775126 hasConceptScore W4322775126C2778439541 @default.
- W4322775126 hasConceptScore W4322775126C41008148 @default.
- W4322775126 hasConceptScore W4322775126C49040817 @default.
- W4322775126 hasConceptScore W4322775126C50644808 @default.
- W4322775126 hasConceptScore W4322775126C55493867 @default.
- W4322775126 hasConceptScore W4322775126C79090758 @default.
- W4322775126 hasFunder F4320322120 @default.
- W4322775126 hasIssue "1" @default.
- W4322775126 hasLocation W43227751261 @default.
- W4322775126 hasOpenAccess W4322775126 @default.
- W4322775126 hasPrimaryLocation W43227751261 @default.
- W4322775126 hasRelatedWork W2009465051 @default.
- W4322775126 hasRelatedWork W2052376502 @default.
- W4322775126 hasRelatedWork W2112542631 @default.