Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322775189> ?p ?o ?g. }
- W4322775189 endingPage "15" @default.
- W4322775189 startingPage "P6" @default.
- W4322775189 abstract "Abstract Introduction Tertiary lymphoid structures (TLSs) and tumor-infiltrating lymphocytes (TILs) in breast carcinomas are prognostic for survival and predictive of certain therapy responses. The presence of TLSs and TILs are identified by manual pathological examination; however, this method often lacks reproducibility, limiting its use in routine clinical practice. Here, we demonstrate that morphological evaluation of whole slide images (WSIs) using an artificial intelligence (AI)-based analytic workflow comprised of convolutional neural network (CNN) deep learning models that accurately and reproducibly characterizes TILs, measured as the lymphocyte immune-infiltrated area (LIIA), and TLSs in the tumor microenvironment (TME) of breast carcinomas. Methods We collected a cohort of 445 TCGA breast cancer H&E WSIs, including clinical and sequencing data, and divided this cohort into luminal invasive lobular carcinoma (ILC) (n = 192), HER2-enriched (n = 110), and basal-like (n = 143) molecular subtypes. After 55 samples were excluded due to artifacts or incomplete clinical annotation, a total of 390 samples were analyzed. A combination of CNN-based deep learning models was used to detect and classify the tumor area, TLSs present in the TME, TLS density (number of TLS per mm2 of tumor), and lymphocyte-rich regions. The LIIA was calculated as the area of the stromal and TIL components of the TME. Validation was performed by manually annotating 10 random WSIs from the dataset. Spatial model predictions of the tumor and TLSs were combined to identify TLS locations. Each model’s predictions were verified by univariate (Kaplan-Meier) and multivariate (Cox regression) survival analyses, and the log-rank test was used to calculate overall survival. Additionally, the relationship between TLSs and LIIAs with CD274 expression (PD-L1) and a high tumor mutational burden (TMB > 10) was analyzed. Statistical analyses included Spearman’s rank correlation and Mann-Whitney tests. Results TLS were detected in 53% (n = 207) of the samples, with a mean density of 26.02 TLS/mm2 (Q3 = 5.53 TLS/mm2). TLS density was higher in basal-like subtype samples compared to luminal and HER2-enriched subtypes. While LIIA and TMB-high samples exhibited a significant relationship (p = 0.00001), no significant association was found between TME and TLS quantities or density. PD-L1 gene expression exhibited weak to moderate correlations with predicted LIIA in basal-like (r = 0.38, p = 0.00001) and HER2-enriched subtypes (r = 0.38, p = 0.0001). The luminal subtype had no significant correlation between PD-L1 expression and predicted LIIA. As a result, LIIA and TLS were characterized as positive prognostic factors for the basal-like subtype. After adjusting for age, stage, and grade, the LIIA and TLS density were found to be significant independent positive prognostic overall survival factors for the basal-like subtype (LIIA HR: 0.02, p = 0.003; TLS-high group HR: 0.09, p = 0.002). For the HER2-enriched subtype, TLS density was also a significant predictor (HR: 0.05, p = 0.035), while LIIA was not a statistically significant prognostic factor (HR: 0.0002, p = 0.08). Associations were not observed between the TLSs and LIIA between the ILC subtypes and survival outcomes. The same result was observed for univariate analyses. Conclusion The developed analytic pipeline accurately identified the presence of LIIA and TLS on H&E slides, demonstrating the potential of CNN for automated characterization of the breast cancer TME. AI-based TLS and LIIA quantification can be a robust tool for pathology processes, offering additional information to help in clinical decision-making. This approach can be used to detect features of immune morphology biomarkers in other cancer types. Citation Format: Vladimir Kushnarev, Daniil Dymov, Nadezhda Lukashevich, Lev Popyvanov, Anna Belozerova, Diana Shamsutdinova, Aida Akaeva, Yury Popov, Svetlana Khorkova, Ivan Valiev, Anastasia Zotova, Jessica H. Brown, Anna Love, Alexander Bagaev, Ekaterina Postovalova, Nathan Fowler. AI-based prediction of tertiary lymphoid structures and lymphocyte immune infiltration in breast carcinomas [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P6-04-15." @default.
- W4322775189 created "2023-03-03" @default.
- W4322775189 creator A5000489634 @default.
- W4322775189 creator A5011180845 @default.
- W4322775189 creator A5012891256 @default.
- W4322775189 creator A5019399611 @default.
- W4322775189 creator A5020440193 @default.
- W4322775189 creator A5029784254 @default.
- W4322775189 creator A5040482418 @default.
- W4322775189 creator A5042828194 @default.
- W4322775189 creator A5044284041 @default.
- W4322775189 creator A5045749988 @default.
- W4322775189 creator A5051471065 @default.
- W4322775189 creator A5052561648 @default.
- W4322775189 creator A5066230062 @default.
- W4322775189 creator A5073345057 @default.
- W4322775189 creator A5073755467 @default.
- W4322775189 creator A5075135910 @default.
- W4322775189 date "2023-03-01" @default.
- W4322775189 modified "2023-10-17" @default.
- W4322775189 title "Abstract P6-04-15: AI-based prediction of tertiary lymphoid structures and lymphocyte immune infiltration in breast carcinomas" @default.
- W4322775189 doi "https://doi.org/10.1158/1538-7445.sabcs22-p6-04-15" @default.
- W4322775189 hasPublicationYear "2023" @default.
- W4322775189 type Work @default.
- W4322775189 citedByCount "0" @default.
- W4322775189 crossrefType "journal-article" @default.
- W4322775189 hasAuthorship W4322775189A5000489634 @default.
- W4322775189 hasAuthorship W4322775189A5011180845 @default.
- W4322775189 hasAuthorship W4322775189A5012891256 @default.
- W4322775189 hasAuthorship W4322775189A5019399611 @default.
- W4322775189 hasAuthorship W4322775189A5020440193 @default.
- W4322775189 hasAuthorship W4322775189A5029784254 @default.
- W4322775189 hasAuthorship W4322775189A5040482418 @default.
- W4322775189 hasAuthorship W4322775189A5042828194 @default.
- W4322775189 hasAuthorship W4322775189A5044284041 @default.
- W4322775189 hasAuthorship W4322775189A5045749988 @default.
- W4322775189 hasAuthorship W4322775189A5051471065 @default.
- W4322775189 hasAuthorship W4322775189A5052561648 @default.
- W4322775189 hasAuthorship W4322775189A5066230062 @default.
- W4322775189 hasAuthorship W4322775189A5073345057 @default.
- W4322775189 hasAuthorship W4322775189A5073755467 @default.
- W4322775189 hasAuthorship W4322775189A5075135910 @default.
- W4322775189 hasConcept C119857082 @default.
- W4322775189 hasConcept C121608353 @default.
- W4322775189 hasConcept C126322002 @default.
- W4322775189 hasConcept C142724271 @default.
- W4322775189 hasConcept C143998085 @default.
- W4322775189 hasConcept C144301174 @default.
- W4322775189 hasConcept C154945302 @default.
- W4322775189 hasConcept C161584116 @default.
- W4322775189 hasConcept C167672396 @default.
- W4322775189 hasConcept C16930146 @default.
- W4322775189 hasConcept C199163554 @default.
- W4322775189 hasConcept C203014093 @default.
- W4322775189 hasConcept C2776107976 @default.
- W4322775189 hasConcept C2777522853 @default.
- W4322775189 hasConcept C2778326572 @default.
- W4322775189 hasConcept C38180746 @default.
- W4322775189 hasConcept C41008148 @default.
- W4322775189 hasConcept C50382708 @default.
- W4322775189 hasConcept C530470458 @default.
- W4322775189 hasConcept C71924100 @default.
- W4322775189 hasConcept C72563966 @default.
- W4322775189 hasConcept C81363708 @default.
- W4322775189 hasConcept C8891405 @default.
- W4322775189 hasConceptScore W4322775189C119857082 @default.
- W4322775189 hasConceptScore W4322775189C121608353 @default.
- W4322775189 hasConceptScore W4322775189C126322002 @default.
- W4322775189 hasConceptScore W4322775189C142724271 @default.
- W4322775189 hasConceptScore W4322775189C143998085 @default.
- W4322775189 hasConceptScore W4322775189C144301174 @default.
- W4322775189 hasConceptScore W4322775189C154945302 @default.
- W4322775189 hasConceptScore W4322775189C161584116 @default.
- W4322775189 hasConceptScore W4322775189C167672396 @default.
- W4322775189 hasConceptScore W4322775189C16930146 @default.
- W4322775189 hasConceptScore W4322775189C199163554 @default.
- W4322775189 hasConceptScore W4322775189C203014093 @default.
- W4322775189 hasConceptScore W4322775189C2776107976 @default.
- W4322775189 hasConceptScore W4322775189C2777522853 @default.
- W4322775189 hasConceptScore W4322775189C2778326572 @default.
- W4322775189 hasConceptScore W4322775189C38180746 @default.
- W4322775189 hasConceptScore W4322775189C41008148 @default.
- W4322775189 hasConceptScore W4322775189C50382708 @default.
- W4322775189 hasConceptScore W4322775189C530470458 @default.
- W4322775189 hasConceptScore W4322775189C71924100 @default.
- W4322775189 hasConceptScore W4322775189C72563966 @default.
- W4322775189 hasConceptScore W4322775189C81363708 @default.
- W4322775189 hasConceptScore W4322775189C8891405 @default.
- W4322775189 hasIssue "5_Supplement" @default.
- W4322775189 hasLocation W43227751891 @default.
- W4322775189 hasOpenAccess W4322775189 @default.
- W4322775189 hasPrimaryLocation W43227751891 @default.
- W4322775189 hasRelatedWork W2953174154 @default.
- W4322775189 hasRelatedWork W3010976621 @default.
- W4322775189 hasRelatedWork W3011609356 @default.
- W4322775189 hasRelatedWork W3015340136 @default.
- W4322775189 hasRelatedWork W3099981825 @default.
- W4322775189 hasRelatedWork W3144899533 @default.