Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322776252> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4322776252 abstract "The data that matters to executives in the United States industry includes machine performance data, maintenance and service data, and production data. This data improves machine performance, reduces downtime, and increases efficiency. The individuals who need this data include executives, maintenance and service personnel, and production managers. The methods of ensuring that the critical data reaches the users have industrial big data analytics, implementing a robust data management system, and training personnel. The use of big data analytics in various industries has been growing rapidly over the past few years. The industrial sector has seen significant benefits from implementing big data analytics. This research paper explores the potential of future maintenance and service innovation in the United States industrial sector using big data analytics, the benefits of being data-driven, and implementing a data-driven process strategy in the United States industrial sector. The paper explains the key data sources, storage, and processing techniques currently used in the industry to gather and analyze data. The paper also identifies the challenges and methodologies in leveraging big data analytics to drive maintenance and service operations innovation. The study will focus on identifying the data that matters most to executives in the industry, determining who needs it, and exploring methods for ensuring the critical data is effectively communicated to its intended users. Additionally, the paper will examine recent advances and terminologies in big data analytics, the methodology for designing innovation-based industries, presents the theoretical background and hypotheses, and examine limitations and future research opportunities in the field. KEYWORDS - Maintenance, Innovation, Big Data, Analytics, Industry, United States, Data, Organization DOI: 10.7176/CEIS/14-1-04 Publication date: February 28 th 2023" @default.
- W4322776252 created "2023-03-03" @default.
- W4322776252 date "2023-02-01" @default.
- W4322776252 modified "2023-09-26" @default.
- W4322776252 title "Future Maintenance and Service Innovation Using Industrial Big Data Analytics in The United States" @default.
- W4322776252 doi "https://doi.org/10.7176/ceis/14-1-04" @default.
- W4322776252 hasPublicationYear "2023" @default.
- W4322776252 type Work @default.
- W4322776252 citedByCount "0" @default.
- W4322776252 crossrefType "journal-article" @default.
- W4322776252 hasBestOaLocation W43227762521 @default.
- W4322776252 hasConcept C111919701 @default.
- W4322776252 hasConcept C124101348 @default.
- W4322776252 hasConcept C144133560 @default.
- W4322776252 hasConcept C162853370 @default.
- W4322776252 hasConcept C175801342 @default.
- W4322776252 hasConcept C180591934 @default.
- W4322776252 hasConcept C195094911 @default.
- W4322776252 hasConcept C2522767166 @default.
- W4322776252 hasConcept C2780378061 @default.
- W4322776252 hasConcept C41008148 @default.
- W4322776252 hasConcept C75684735 @default.
- W4322776252 hasConcept C79158427 @default.
- W4322776252 hasConceptScore W4322776252C111919701 @default.
- W4322776252 hasConceptScore W4322776252C124101348 @default.
- W4322776252 hasConceptScore W4322776252C144133560 @default.
- W4322776252 hasConceptScore W4322776252C162853370 @default.
- W4322776252 hasConceptScore W4322776252C175801342 @default.
- W4322776252 hasConceptScore W4322776252C180591934 @default.
- W4322776252 hasConceptScore W4322776252C195094911 @default.
- W4322776252 hasConceptScore W4322776252C2522767166 @default.
- W4322776252 hasConceptScore W4322776252C2780378061 @default.
- W4322776252 hasConceptScore W4322776252C41008148 @default.
- W4322776252 hasConceptScore W4322776252C75684735 @default.
- W4322776252 hasConceptScore W4322776252C79158427 @default.
- W4322776252 hasLocation W43227762521 @default.
- W4322776252 hasOpenAccess W4322776252 @default.
- W4322776252 hasPrimaryLocation W43227762521 @default.
- W4322776252 hasRelatedWork W2337265393 @default.
- W4322776252 hasRelatedWork W2472976221 @default.
- W4322776252 hasRelatedWork W2508885301 @default.
- W4322776252 hasRelatedWork W2509056639 @default.
- W4322776252 hasRelatedWork W2625749796 @default.
- W4322776252 hasRelatedWork W2739436898 @default.
- W4322776252 hasRelatedWork W2777139086 @default.
- W4322776252 hasRelatedWork W2929289283 @default.
- W4322776252 hasRelatedWork W4386323208 @default.
- W4322776252 hasRelatedWork W2551093110 @default.
- W4322776252 isParatext "false" @default.
- W4322776252 isRetracted "false" @default.
- W4322776252 workType "article" @default.