Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322832005> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4322832005 abstract "Machine Learning (ML) has widely been used for modeling and predicting physical systems. These techniques offer high expressive power and good generalizability for interpolation within observed data sets. However, the disadvantage of black-box models is that they underperform under blind conditions since no physical knowledge is incorporated. Physics-based ML aims to address this problem by retaining the mathematical flexibility of ML techniques while incorporating physics. In accord, this paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines. A specific class of kernel function is promoted, which has a connection with the gradient of the physics-based model with respect to the input and parameters and shares similarity with the exact Autocovariance function of linear dynamical systems. The spectral properties of the kernel function enable considering dominant periodic processes originating from physics misspecification. Nevertheless, the stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques. This implementation is also advantageous to mitigate computational costs, alleviating the scalability of GPs when dealing with sequential data. Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated." @default.
- W4322832005 created "2023-03-03" @default.
- W4322832005 creator A5017317585 @default.
- W4322832005 creator A5041581034 @default.
- W4322832005 creator A5062653452 @default.
- W4322832005 creator A5072639990 @default.
- W4322832005 date "2023-02-28" @default.
- W4322832005 modified "2023-09-27" @default.
- W4322832005 title "On the Integration of Physics-Based Machine Learning with Hierarchical Bayesian Modeling Techniques" @default.
- W4322832005 doi "https://doi.org/10.48550/arxiv.2303.00187" @default.
- W4322832005 hasPublicationYear "2023" @default.
- W4322832005 type Work @default.
- W4322832005 citedByCount "0" @default.
- W4322832005 crossrefType "posted-content" @default.
- W4322832005 hasAuthorship W4322832005A5017317585 @default.
- W4322832005 hasAuthorship W4322832005A5041581034 @default.
- W4322832005 hasAuthorship W4322832005A5062653452 @default.
- W4322832005 hasAuthorship W4322832005A5072639990 @default.
- W4322832005 hasBestOaLocation W43228320051 @default.
- W4322832005 hasConcept C102519508 @default.
- W4322832005 hasConcept C11413529 @default.
- W4322832005 hasConcept C114614502 @default.
- W4322832005 hasConcept C119857082 @default.
- W4322832005 hasConcept C121332964 @default.
- W4322832005 hasConcept C122280245 @default.
- W4322832005 hasConcept C12267149 @default.
- W4322832005 hasConcept C134306372 @default.
- W4322832005 hasConcept C154945302 @default.
- W4322832005 hasConcept C163716315 @default.
- W4322832005 hasConcept C33923547 @default.
- W4322832005 hasConcept C41008148 @default.
- W4322832005 hasConcept C61326573 @default.
- W4322832005 hasConcept C62520636 @default.
- W4322832005 hasConcept C74193536 @default.
- W4322832005 hasConcept C88271906 @default.
- W4322832005 hasConceptScore W4322832005C102519508 @default.
- W4322832005 hasConceptScore W4322832005C11413529 @default.
- W4322832005 hasConceptScore W4322832005C114614502 @default.
- W4322832005 hasConceptScore W4322832005C119857082 @default.
- W4322832005 hasConceptScore W4322832005C121332964 @default.
- W4322832005 hasConceptScore W4322832005C122280245 @default.
- W4322832005 hasConceptScore W4322832005C12267149 @default.
- W4322832005 hasConceptScore W4322832005C134306372 @default.
- W4322832005 hasConceptScore W4322832005C154945302 @default.
- W4322832005 hasConceptScore W4322832005C163716315 @default.
- W4322832005 hasConceptScore W4322832005C33923547 @default.
- W4322832005 hasConceptScore W4322832005C41008148 @default.
- W4322832005 hasConceptScore W4322832005C61326573 @default.
- W4322832005 hasConceptScore W4322832005C62520636 @default.
- W4322832005 hasConceptScore W4322832005C74193536 @default.
- W4322832005 hasConceptScore W4322832005C88271906 @default.
- W4322832005 hasLocation W43228320051 @default.
- W4322832005 hasOpenAccess W4322832005 @default.
- W4322832005 hasPrimaryLocation W43228320051 @default.
- W4322832005 hasRelatedWork W1932525473 @default.
- W4322832005 hasRelatedWork W2251217661 @default.
- W4322832005 hasRelatedWork W2251221343 @default.
- W4322832005 hasRelatedWork W2370622958 @default.
- W4322832005 hasRelatedWork W2739765643 @default.
- W4322832005 hasRelatedWork W2783038087 @default.
- W4322832005 hasRelatedWork W2977967020 @default.
- W4322832005 hasRelatedWork W3131195611 @default.
- W4322832005 hasRelatedWork W3185411971 @default.
- W4322832005 hasRelatedWork W4313525651 @default.
- W4322832005 isParatext "false" @default.
- W4322832005 isRetracted "false" @default.
- W4322832005 workType "article" @default.