Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323021761> ?p ?o ?g. }
- W4323021761 abstract "The importance of the internet across the globe cannot be over-emphasized as such network security is essential to curb future attack occurrences. Cyber-attacks like DDoS and Ransomware yielded a lot of damage to connected devices by endangering and accessing them, notwithstanding these damages are air marked to be on the rise. To overcome these issues, machine learning has been used in different computing aspects such as cyber–Intrusion Detection. Recently, deep learning, extreme learning, and deep extreme learning networks have superseded machine learning in this context due to their iterative hidden layers that can manipulate complex features of cyber intrusion data. Hence, this research surveys the application of data-driven intelligent algorithms for cyber security attack detection in comparison to conventional machine learning techniques. The review focuses on the performance evaluation of several state-of-the-art intelligent algorithms and provides research gaps and future 2trends in the context of Data Security Attacks and Cyber Intrusion Detection." @default.
- W4323021761 created "2023-03-04" @default.
- W4323021761 creator A5005416486 @default.
- W4323021761 creator A5010469356 @default.
- W4323021761 creator A5024017875 @default.
- W4323021761 creator A5031062238 @default.
- W4323021761 creator A5035348214 @default.
- W4323021761 creator A5090196764 @default.
- W4323021761 date "2022-11-01" @default.
- W4323021761 modified "2023-09-30" @default.
- W4323021761 title "A Review of Data-Driven Approaches with Emphasis on Machine Learning Base Intrusion Detection Algorithms" @default.
- W4323021761 cites W1967841763 @default.
- W4323021761 cites W2507920413 @default.
- W4323021761 cites W2746495981 @default.
- W4323021761 cites W2783190965 @default.
- W4323021761 cites W2809932464 @default.
- W4323021761 cites W2892556724 @default.
- W4323021761 cites W2902529532 @default.
- W4323021761 cites W2910314742 @default.
- W4323021761 cites W2924211215 @default.
- W4323021761 cites W2929831570 @default.
- W4323021761 cites W2941898360 @default.
- W4323021761 cites W2946893466 @default.
- W4323021761 cites W2952078967 @default.
- W4323021761 cites W2956104821 @default.
- W4323021761 cites W2965561013 @default.
- W4323021761 cites W2970054631 @default.
- W4323021761 cites W2972189363 @default.
- W4323021761 cites W2982565920 @default.
- W4323021761 cites W2999538200 @default.
- W4323021761 cites W3000443349 @default.
- W4323021761 cites W3012972431 @default.
- W4323021761 cites W3014615346 @default.
- W4323021761 cites W3025360836 @default.
- W4323021761 cites W3025519782 @default.
- W4323021761 cites W3027236250 @default.
- W4323021761 cites W3033587968 @default.
- W4323021761 cites W3038955483 @default.
- W4323021761 cites W3040937085 @default.
- W4323021761 cites W3044657053 @default.
- W4323021761 cites W3083130672 @default.
- W4323021761 cites W3100989807 @default.
- W4323021761 cites W3106970112 @default.
- W4323021761 cites W3127247820 @default.
- W4323021761 cites W3127943761 @default.
- W4323021761 cites W3129768586 @default.
- W4323021761 cites W3159355564 @default.
- W4323021761 cites W3167228939 @default.
- W4323021761 cites W3168047084 @default.
- W4323021761 cites W3169330763 @default.
- W4323021761 cites W3183233421 @default.
- W4323021761 cites W3204100060 @default.
- W4323021761 doi "https://doi.org/10.1109/ited56637.2022.10051518" @default.
- W4323021761 hasPublicationYear "2022" @default.
- W4323021761 type Work @default.
- W4323021761 citedByCount "0" @default.
- W4323021761 crossrefType "proceedings-article" @default.
- W4323021761 hasAuthorship W4323021761A5005416486 @default.
- W4323021761 hasAuthorship W4323021761A5010469356 @default.
- W4323021761 hasAuthorship W4323021761A5024017875 @default.
- W4323021761 hasAuthorship W4323021761A5031062238 @default.
- W4323021761 hasAuthorship W4323021761A5035348214 @default.
- W4323021761 hasAuthorship W4323021761A5090196764 @default.
- W4323021761 hasConcept C108583219 @default.
- W4323021761 hasConcept C110875604 @default.
- W4323021761 hasConcept C11413529 @default.
- W4323021761 hasConcept C119857082 @default.
- W4323021761 hasConcept C136764020 @default.
- W4323021761 hasConcept C151730666 @default.
- W4323021761 hasConcept C154945302 @default.
- W4323021761 hasConcept C2777667771 @default.
- W4323021761 hasConcept C2779343474 @default.
- W4323021761 hasConcept C35525427 @default.
- W4323021761 hasConcept C38652104 @default.
- W4323021761 hasConcept C38822068 @default.
- W4323021761 hasConcept C41008148 @default.
- W4323021761 hasConcept C541664917 @default.
- W4323021761 hasConcept C86803240 @default.
- W4323021761 hasConceptScore W4323021761C108583219 @default.
- W4323021761 hasConceptScore W4323021761C110875604 @default.
- W4323021761 hasConceptScore W4323021761C11413529 @default.
- W4323021761 hasConceptScore W4323021761C119857082 @default.
- W4323021761 hasConceptScore W4323021761C136764020 @default.
- W4323021761 hasConceptScore W4323021761C151730666 @default.
- W4323021761 hasConceptScore W4323021761C154945302 @default.
- W4323021761 hasConceptScore W4323021761C2777667771 @default.
- W4323021761 hasConceptScore W4323021761C2779343474 @default.
- W4323021761 hasConceptScore W4323021761C35525427 @default.
- W4323021761 hasConceptScore W4323021761C38652104 @default.
- W4323021761 hasConceptScore W4323021761C38822068 @default.
- W4323021761 hasConceptScore W4323021761C41008148 @default.
- W4323021761 hasConceptScore W4323021761C541664917 @default.
- W4323021761 hasConceptScore W4323021761C86803240 @default.
- W4323021761 hasFunder F4320321038 @default.
- W4323021761 hasFunder F4320325463 @default.
- W4323021761 hasLocation W43230217611 @default.
- W4323021761 hasOpenAccess W4323021761 @default.
- W4323021761 hasPrimaryLocation W43230217611 @default.
- W4323021761 hasRelatedWork W2584408238 @default.
- W4323021761 hasRelatedWork W3043172660 @default.