Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323031630> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4323031630 endingPage "e1010951" @default.
- W4323031630 startingPage "e1010951" @default.
- W4323031630 abstract "Accurate prediction of synergistic effects of drug combinations can reduce the experimental costs for drug development and facilitate the discovery of novel efficacious combination therapies for clinical studies. The drug combinations with high synergy scores are regarded as synergistic ones, while those with moderate or low synergy scores are additive or antagonistic ones. The existing methods usually exploit the synergy data from the aspect of synergistic drug combinations, paying little attention to the additive or antagonistic ones. Also, they usually do not leverage the common patterns of drug combinations across different cell lines. In this paper, we propose a multi-channel graph autoencoder (MGAE)-based method for predicting the synergistic effects of drug combinations (DC), and shortly denote it as MGAE-DC. A MGAE model is built to learn the drug embeddings by considering not only synergistic combinations but also additive and antagonistic ones as three input channels. The later two channels guide the model to explicitly characterize the features of non-synergistic combinations through an encoder-decoder learning process, and thus the drug embeddings become more discriminative between synergistic and non-synergistic combinations. In addition, an attention mechanism is incorporated to fuse each cell-line’s drug embeddings across various cell lines, and a common drug embedding is extracted to capture the invariant patterns by developing a set of cell-line shared decoders. The generalization performance of our model is further improved with the invariant patterns. With the cell-line specific and common drug embeddings, our method is extended to predict the synergy scores of drug combinations by a neural network module. Experiments on four benchmark datasets demonstrate that MGAE-DC consistently outperforms the state-of-the-art methods. In-depth literature survey is conducted to find that many drug combinations predicted by MGAE-DC are supported by previous experimental studies. The source code and data are available at https://github.com/yushenshashen/MGAE-DC ." @default.
- W4323031630 created "2023-03-04" @default.
- W4323031630 creator A5020548567 @default.
- W4323031630 creator A5073963268 @default.
- W4323031630 date "2023-03-03" @default.
- W4323031630 modified "2023-09-30" @default.
- W4323031630 title "MGAE-DC: Predicting the synergistic effects of drug combinations through multi-channel graph autoencoders" @default.
- W4323031630 cites W1578932543 @default.
- W4323031630 cites W1987706812 @default.
- W4323031630 cites W1992039369 @default.
- W4323031630 cites W2003420178 @default.
- W4323031630 cites W2041173222 @default.
- W4323031630 cites W2061136308 @default.
- W4323031630 cites W2065731961 @default.
- W4323031630 cites W2116462976 @default.
- W4323031630 cites W2126726407 @default.
- W4323031630 cites W2299417213 @default.
- W4323031630 cites W2304111010 @default.
- W4323031630 cites W2488254673 @default.
- W4323031630 cites W2571957366 @default.
- W4323031630 cites W2724799126 @default.
- W4323031630 cites W2775061087 @default.
- W4323031630 cites W2790203313 @default.
- W4323031630 cites W2950860419 @default.
- W4323031630 cites W2960677646 @default.
- W4323031630 cites W2982291409 @default.
- W4323031630 cites W3006386963 @default.
- W4323031630 cites W3093687066 @default.
- W4323031630 cites W3102269903 @default.
- W4323031630 cites W3120627169 @default.
- W4323031630 cites W3127930610 @default.
- W4323031630 cites W3164087725 @default.
- W4323031630 cites W3195831412 @default.
- W4323031630 cites W3203908308 @default.
- W4323031630 cites W4206405364 @default.
- W4323031630 cites W4206718607 @default.
- W4323031630 cites W4206796410 @default.
- W4323031630 cites W4212799760 @default.
- W4323031630 cites W4293214728 @default.
- W4323031630 cites W4296907511 @default.
- W4323031630 cites W4297064879 @default.
- W4323031630 doi "https://doi.org/10.1371/journal.pcbi.1010951" @default.
- W4323031630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36867661" @default.
- W4323031630 hasPublicationYear "2023" @default.
- W4323031630 type Work @default.
- W4323031630 citedByCount "3" @default.
- W4323031630 countsByYear W43230316302023 @default.
- W4323031630 crossrefType "journal-article" @default.
- W4323031630 hasAuthorship W4323031630A5020548567 @default.
- W4323031630 hasAuthorship W4323031630A5073963268 @default.
- W4323031630 hasBestOaLocation W43230316301 @default.
- W4323031630 hasConcept C101738243 @default.
- W4323031630 hasConcept C119857082 @default.
- W4323031630 hasConcept C153083717 @default.
- W4323031630 hasConcept C154945302 @default.
- W4323031630 hasConcept C2780035454 @default.
- W4323031630 hasConcept C41008148 @default.
- W4323031630 hasConcept C50644808 @default.
- W4323031630 hasConcept C70721500 @default.
- W4323031630 hasConcept C86803240 @default.
- W4323031630 hasConcept C97931131 @default.
- W4323031630 hasConcept C98274493 @default.
- W4323031630 hasConceptScore W4323031630C101738243 @default.
- W4323031630 hasConceptScore W4323031630C119857082 @default.
- W4323031630 hasConceptScore W4323031630C153083717 @default.
- W4323031630 hasConceptScore W4323031630C154945302 @default.
- W4323031630 hasConceptScore W4323031630C2780035454 @default.
- W4323031630 hasConceptScore W4323031630C41008148 @default.
- W4323031630 hasConceptScore W4323031630C50644808 @default.
- W4323031630 hasConceptScore W4323031630C70721500 @default.
- W4323031630 hasConceptScore W4323031630C86803240 @default.
- W4323031630 hasConceptScore W4323031630C97931131 @default.
- W4323031630 hasConceptScore W4323031630C98274493 @default.
- W4323031630 hasFunder F4320321001 @default.
- W4323031630 hasIssue "3" @default.
- W4323031630 hasLocation W43230316301 @default.
- W4323031630 hasLocation W43230316302 @default.
- W4323031630 hasLocation W43230316303 @default.
- W4323031630 hasOpenAccess W4323031630 @default.
- W4323031630 hasPrimaryLocation W43230316301 @default.
- W4323031630 hasRelatedWork W2135306627 @default.
- W4323031630 hasRelatedWork W2888022311 @default.
- W4323031630 hasRelatedWork W2972970938 @default.
- W4323031630 hasRelatedWork W2983744209 @default.
- W4323031630 hasRelatedWork W2998168123 @default.
- W4323031630 hasRelatedWork W4220682630 @default.
- W4323031630 hasRelatedWork W4220775285 @default.
- W4323031630 hasRelatedWork W4283730525 @default.
- W4323031630 hasRelatedWork W4287995534 @default.
- W4323031630 hasRelatedWork W4384300587 @default.
- W4323031630 hasVolume "19" @default.
- W4323031630 isParatext "false" @default.
- W4323031630 isRetracted "false" @default.
- W4323031630 workType "article" @default.