Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323031678> ?p ?o ?g. }
- W4323031678 endingPage "1269" @default.
- W4323031678 startingPage "1255" @default.
- W4323031678 abstract "Abstract This article applies deep learning-accelerated inverse design algorithms and discovers a spectrum of photonic power dividers with exceptional performance metrics despite the simplicity in the design geometry. The deep learning models exhibit high precisions on the order of 10 −6 to 10 −8 for both TE and TM polarizations of light. These models enable ultrafast search for an empirically describable subspace that simultaneously satisfy compact footprints, ultralow losses, ultrawide bandwidth, and exceptional robustness against fabrication randomness. We demonstrate a spectrum of devices for silicon photonics with programmable power splitting ratios, excess losses as small as 0.14 dB, to the best of our knowledge, the smallest footprints on the scale of sub- λ 2 , and low loss bandwidths covering the whole telecommunication spectrum of O, S, E, C, L and U-bands. The robustness of the devices is statistically checked against the fabrication randomness and are numerically verified using the full three-dimensional finite difference time domain calculation." @default.
- W4323031678 created "2023-03-04" @default.
- W4323031678 creator A5006745079 @default.
- W4323031678 creator A5072359512 @default.
- W4323031678 date "2023-03-03" @default.
- W4323031678 modified "2023-10-05" @default.
- W4323031678 title "Deep learning accelerated discovery of photonic power dividers" @default.
- W4323031678 cites W1965587773 @default.
- W4323031678 cites W1971760496 @default.
- W4323031678 cites W1992713499 @default.
- W4323031678 cites W2009741032 @default.
- W4323031678 cites W2033204707 @default.
- W4323031678 cites W2062294208 @default.
- W4323031678 cites W2122238162 @default.
- W4323031678 cites W2129571576 @default.
- W4323031678 cites W2142760810 @default.
- W4323031678 cites W2151932174 @default.
- W4323031678 cites W2155482699 @default.
- W4323031678 cites W2170327187 @default.
- W4323031678 cites W2223631739 @default.
- W4323031678 cites W2543279760 @default.
- W4323031678 cites W2559540606 @default.
- W4323031678 cites W2610434393 @default.
- W4323031678 cites W2775280502 @default.
- W4323031678 cites W2807435816 @default.
- W4323031678 cites W2886111172 @default.
- W4323031678 cites W2889354965 @default.
- W4323031678 cites W2912011633 @default.
- W4323031678 cites W2914274640 @default.
- W4323031678 cites W2942778021 @default.
- W4323031678 cites W2946250475 @default.
- W4323031678 cites W2956449284 @default.
- W4323031678 cites W2969080305 @default.
- W4323031678 cites W2972029416 @default.
- W4323031678 cites W2980362476 @default.
- W4323031678 cites W3003905418 @default.
- W4323031678 cites W3004650610 @default.
- W4323031678 cites W3004833610 @default.
- W4323031678 cites W3008541886 @default.
- W4323031678 cites W3008967825 @default.
- W4323031678 cites W3017592144 @default.
- W4323031678 cites W3035776569 @default.
- W4323031678 cites W3049316615 @default.
- W4323031678 cites W3092323705 @default.
- W4323031678 cites W3094241042 @default.
- W4323031678 cites W3099853468 @default.
- W4323031678 cites W3100398110 @default.
- W4323031678 cites W3105195789 @default.
- W4323031678 cites W3112263403 @default.
- W4323031678 cites W3119472565 @default.
- W4323031678 cites W3122171420 @default.
- W4323031678 cites W3189833076 @default.
- W4323031678 cites W3212734844 @default.
- W4323031678 cites W4210668976 @default.
- W4323031678 cites W4231554882 @default.
- W4323031678 cites W4240590154 @default.
- W4323031678 doi "https://doi.org/10.1515/nanoph-2022-0715" @default.
- W4323031678 hasPublicationYear "2023" @default.
- W4323031678 type Work @default.
- W4323031678 citedByCount "0" @default.
- W4323031678 crossrefType "journal-article" @default.
- W4323031678 hasAuthorship W4323031678A5006745079 @default.
- W4323031678 hasAuthorship W4323031678A5072359512 @default.
- W4323031678 hasBestOaLocation W43230316781 @default.
- W4323031678 hasConcept C104317684 @default.
- W4323031678 hasConcept C105795698 @default.
- W4323031678 hasConcept C120665830 @default.
- W4323031678 hasConcept C121332964 @default.
- W4323031678 hasConcept C125112378 @default.
- W4323031678 hasConcept C127413603 @default.
- W4323031678 hasConcept C136525101 @default.
- W4323031678 hasConcept C142724271 @default.
- W4323031678 hasConcept C154945302 @default.
- W4323031678 hasConcept C184880428 @default.
- W4323031678 hasConcept C185592680 @default.
- W4323031678 hasConcept C192562407 @default.
- W4323031678 hasConcept C204787440 @default.
- W4323031678 hasConcept C20788544 @default.
- W4323031678 hasConcept C24326235 @default.
- W4323031678 hasConcept C2776257435 @default.
- W4323031678 hasConcept C32834561 @default.
- W4323031678 hasConcept C33923547 @default.
- W4323031678 hasConcept C41008148 @default.
- W4323031678 hasConcept C49040817 @default.
- W4323031678 hasConcept C55493867 @default.
- W4323031678 hasConcept C63479239 @default.
- W4323031678 hasConcept C71924100 @default.
- W4323031678 hasConcept C76155785 @default.
- W4323031678 hasConceptScore W4323031678C104317684 @default.
- W4323031678 hasConceptScore W4323031678C105795698 @default.
- W4323031678 hasConceptScore W4323031678C120665830 @default.
- W4323031678 hasConceptScore W4323031678C121332964 @default.
- W4323031678 hasConceptScore W4323031678C125112378 @default.
- W4323031678 hasConceptScore W4323031678C127413603 @default.
- W4323031678 hasConceptScore W4323031678C136525101 @default.
- W4323031678 hasConceptScore W4323031678C142724271 @default.
- W4323031678 hasConceptScore W4323031678C154945302 @default.
- W4323031678 hasConceptScore W4323031678C184880428 @default.