Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323034861> ?p ?o ?g. }
- W4323034861 endingPage "9538" @default.
- W4323034861 startingPage "9526" @default.
- W4323034861 abstract "In China, the capacity to produce coalbed methane and extract underground gas is restricted by the prevalence of low-permeability coal seams. Liquid nitrogen fracturing is a new low temperature-high-pressure anhydrous fracturing technology that uses low temperature and high frost heave forces to increase coal permeability. To better understand the liquid nitrogen fracturing effect on coal, we conduct the liquid nitrogen freeze-thaw cycle (LNCFT) experiments on different rank coals from Qinghai, Shanxi, and Shaanxi provinces. We combined the low-pressure nitrogen and carbon dioxide adsorption experiment with the non-local density functional theory model and mercury injection porosimetry with compressibility corrections to examine the full pore size distributions of untreated and water-saturated samples before and after LNCFT. The results found that LNCFT can effectively increase the pore volume (PV) and specific surface area of the water-saturated coal sample. Compared with the raw coal, the increased ratio of the full pore size PV is 70.41-100.17%. However, the scale-selective transformation effect on pores during liquid nitrogen fracturing is noticeable. Under the same conditions, LNCFT can significantly increase the pore volume of micropores (>2 nm) and macropores (>50 nm), and the increase ratios are 24.40-44.16 and 103.55-327.93%, respectively. The PV of mesopores (2-50 nm) shows a slightly increasing trend with the increase in metamorphic degree, and the increase ratio is between 8.7 and 56%. Comparing the full pore size distribution curves before and after LNCFT, it is found that the alteration of high-volatile bituminous coal (BLT coal) and anthracite (SH coal) has more significance in the range of less than 2 and 50-20,000 nm, while middle-volatile bituminous coal (YJL coal) varies between 50 and 2000 nm. Meanwhile, the ratio of micropore and mesopore PV to the total decreased gradually before and after LNCFT, while the proportion of macropores increased, indicating that small-scale pores would intersect and connect to form larger-scale pores during the fracturing. The combined effects of temperature gradient, water-ice phase transition, and heat transmission rate are the key factors that determine the impact of LNCFT on pore size distribution. Our results provide new information for enhancing the permeability of low-permeability coal seams of different ranks." @default.
- W4323034861 created "2023-03-04" @default.
- W4323034861 creator A5000468120 @default.
- W4323034861 creator A5001969147 @default.
- W4323034861 creator A5020235965 @default.
- W4323034861 creator A5020403176 @default.
- W4323034861 creator A5043069455 @default.
- W4323034861 creator A5076460963 @default.
- W4323034861 date "2023-03-03" @default.
- W4323034861 modified "2023-10-13" @default.
- W4323034861 title "Selection Effect of Liquid Nitrogen Freeze–Thaw Cycles on Full Pore Size Distribution of Different Rank Coals" @default.
- W4323034861 cites W1980044895 @default.
- W4323034861 cites W2015992018 @default.
- W4323034861 cites W2028218966 @default.
- W4323034861 cites W2046282520 @default.
- W4323034861 cites W2074671876 @default.
- W4323034861 cites W2095158302 @default.
- W4323034861 cites W2187481500 @default.
- W4323034861 cites W2194882149 @default.
- W4323034861 cites W2220406035 @default.
- W4323034861 cites W2317613820 @default.
- W4323034861 cites W2434380008 @default.
- W4323034861 cites W2508030042 @default.
- W4323034861 cites W2611958894 @default.
- W4323034861 cites W2625444509 @default.
- W4323034861 cites W2770002854 @default.
- W4323034861 cites W2996151975 @default.
- W4323034861 cites W3000058942 @default.
- W4323034861 cites W3005411648 @default.
- W4323034861 cites W3023355989 @default.
- W4323034861 cites W3044891008 @default.
- W4323034861 cites W3048220401 @default.
- W4323034861 cites W3084043298 @default.
- W4323034861 cites W3104601657 @default.
- W4323034861 cites W3122015379 @default.
- W4323034861 cites W3185777504 @default.
- W4323034861 cites W3204299266 @default.
- W4323034861 cites W843007777 @default.
- W4323034861 doi "https://doi.org/10.1021/acsomega.2c08220" @default.
- W4323034861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36936307" @default.
- W4323034861 hasPublicationYear "2023" @default.
- W4323034861 type Work @default.
- W4323034861 citedByCount "1" @default.
- W4323034861 crossrefType "journal-article" @default.
- W4323034861 hasAuthorship W4323034861A5000468120 @default.
- W4323034861 hasAuthorship W4323034861A5001969147 @default.
- W4323034861 hasAuthorship W4323034861A5020235965 @default.
- W4323034861 hasAuthorship W4323034861A5020403176 @default.
- W4323034861 hasAuthorship W4323034861A5043069455 @default.
- W4323034861 hasAuthorship W4323034861A5076460963 @default.
- W4323034861 hasBestOaLocation W43230348611 @default.
- W4323034861 hasConcept C105569014 @default.
- W4323034861 hasConcept C108615695 @default.
- W4323034861 hasConcept C108939769 @default.
- W4323034861 hasConcept C114873805 @default.
- W4323034861 hasConcept C120882062 @default.
- W4323034861 hasConcept C121332964 @default.
- W4323034861 hasConcept C127413603 @default.
- W4323034861 hasConcept C150394285 @default.
- W4323034861 hasConcept C159985019 @default.
- W4323034861 hasConcept C161790260 @default.
- W4323034861 hasConcept C178790620 @default.
- W4323034861 hasConcept C185592680 @default.
- W4323034861 hasConcept C187714232 @default.
- W4323034861 hasConcept C192562407 @default.
- W4323034861 hasConcept C199289684 @default.
- W4323034861 hasConcept C20556612 @default.
- W4323034861 hasConcept C2776469828 @default.
- W4323034861 hasConcept C41625074 @default.
- W4323034861 hasConcept C42360764 @default.
- W4323034861 hasConcept C518851703 @default.
- W4323034861 hasConcept C537208039 @default.
- W4323034861 hasConcept C55493867 @default.
- W4323034861 hasConcept C57924286 @default.
- W4323034861 hasConcept C6648577 @default.
- W4323034861 hasConcept C82776694 @default.
- W4323034861 hasConcept C97355855 @default.
- W4323034861 hasConceptScore W4323034861C105569014 @default.
- W4323034861 hasConceptScore W4323034861C108615695 @default.
- W4323034861 hasConceptScore W4323034861C108939769 @default.
- W4323034861 hasConceptScore W4323034861C114873805 @default.
- W4323034861 hasConceptScore W4323034861C120882062 @default.
- W4323034861 hasConceptScore W4323034861C121332964 @default.
- W4323034861 hasConceptScore W4323034861C127413603 @default.
- W4323034861 hasConceptScore W4323034861C150394285 @default.
- W4323034861 hasConceptScore W4323034861C159985019 @default.
- W4323034861 hasConceptScore W4323034861C161790260 @default.
- W4323034861 hasConceptScore W4323034861C178790620 @default.
- W4323034861 hasConceptScore W4323034861C185592680 @default.
- W4323034861 hasConceptScore W4323034861C187714232 @default.
- W4323034861 hasConceptScore W4323034861C192562407 @default.
- W4323034861 hasConceptScore W4323034861C199289684 @default.
- W4323034861 hasConceptScore W4323034861C20556612 @default.
- W4323034861 hasConceptScore W4323034861C2776469828 @default.
- W4323034861 hasConceptScore W4323034861C41625074 @default.
- W4323034861 hasConceptScore W4323034861C42360764 @default.
- W4323034861 hasConceptScore W4323034861C518851703 @default.
- W4323034861 hasConceptScore W4323034861C537208039 @default.