Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323042767> ?p ?o ?g. }
- W4323042767 endingPage "095440542311571" @default.
- W4323042767 startingPage "095440542311571" @default.
- W4323042767 abstract "This present paper deals with the results of setting up and evaluating the quality of surface roughness (SR) prediction models through hard turning with self-driven rotary cutting tools for 40X steel shaft with hardness 45HRC. The cutting parameters are considered to establish the SR prediction model include angle tilt of cutting tool axis, depth of cut, feed rate, and cutting speed. The predictive models (PM) are established utilizing Multi-variables Regression Analysis (MRA), Artificial Neural Network (ANN), and Genetic Programming (GP) methods. In this regard, four MRA, four ANN, and three GP structures are considered to select the most suitable model. The criteria to estimate the PM quality include Coefficient of Determination ( R 2 ), Mean Square Error (MSE), and Mean Absolute Percent Error (MAPE). Whereby, two data sets were collected to construct regression models (RM) and to serve verification. That dataset was originated from 63 experiments (Ep) including 54 Ep for establishing PM and 9 extensive experiments (EEp) for testing PM. The prediction criteria of the MRA3 model gave the best results in four MRA models with R 2 of 0.99, MSE of 0.042, and MAPE of 8.087%. The ANN1 gives the most reliable assessment criteria in four ANN models and the GP3 model gave the best in three GP models. The results of predicting the SR value between the selected MRA and ANN and GP models will be assessed in detail. Accordingly, the evaluation criteria of the ANN1 model are the best with the smallest MSE (0.032) and MAPE (7.207%). The MRA3 and GP3 have a lower confidence predictive criteria value than the ANN1 model." @default.
- W4323042767 created "2023-03-04" @default.
- W4323042767 creator A5040213279 @default.
- W4323042767 date "2023-03-03" @default.
- W4323042767 modified "2023-10-18" @default.
- W4323042767 title "Predictive modeling of surface roughness in hard turning with rotary cutting tool based on multiple regression analysis, artificial neural network, and genetic programing methods" @default.
- W4323042767 cites W1586335931 @default.
- W4323042767 cites W1969262584 @default.
- W4323042767 cites W2005826368 @default.
- W4323042767 cites W2016616188 @default.
- W4323042767 cites W2018185075 @default.
- W4323042767 cites W2020116985 @default.
- W4323042767 cites W2037532761 @default.
- W4323042767 cites W2038505613 @default.
- W4323042767 cites W2044506241 @default.
- W4323042767 cites W2059862699 @default.
- W4323042767 cites W2072478339 @default.
- W4323042767 cites W2085853307 @default.
- W4323042767 cites W2086877268 @default.
- W4323042767 cites W2098100436 @default.
- W4323042767 cites W2124097534 @default.
- W4323042767 cites W2160483056 @default.
- W4323042767 cites W2162807413 @default.
- W4323042767 cites W2274718518 @default.
- W4323042767 cites W2749030794 @default.
- W4323042767 cites W2792122202 @default.
- W4323042767 cites W2886639185 @default.
- W4323042767 cites W2950868123 @default.
- W4323042767 cites W2971617596 @default.
- W4323042767 cites W2991134958 @default.
- W4323042767 cites W2997520000 @default.
- W4323042767 cites W3035069470 @default.
- W4323042767 cites W3112227679 @default.
- W4323042767 cites W3135333046 @default.
- W4323042767 cites W3138681994 @default.
- W4323042767 cites W3155227102 @default.
- W4323042767 cites W3165286844 @default.
- W4323042767 cites W3179292879 @default.
- W4323042767 cites W3199567755 @default.
- W4323042767 cites W4206967920 @default.
- W4323042767 cites W4224275365 @default.
- W4323042767 cites W4288045486 @default.
- W4323042767 doi "https://doi.org/10.1177/09544054231157112" @default.
- W4323042767 hasPublicationYear "2023" @default.
- W4323042767 type Work @default.
- W4323042767 citedByCount "1" @default.
- W4323042767 countsByYear W43230427672023 @default.
- W4323042767 crossrefType "journal-article" @default.
- W4323042767 hasAuthorship W4323042767A5040213279 @default.
- W4323042767 hasConcept C105795698 @default.
- W4323042767 hasConcept C107365816 @default.
- W4323042767 hasConcept C110332635 @default.
- W4323042767 hasConcept C119857082 @default.
- W4323042767 hasConcept C128990827 @default.
- W4323042767 hasConcept C139945424 @default.
- W4323042767 hasConcept C150217764 @default.
- W4323042767 hasConcept C152877465 @default.
- W4323042767 hasConcept C154945302 @default.
- W4323042767 hasConcept C159985019 @default.
- W4323042767 hasConcept C192562407 @default.
- W4323042767 hasConcept C33923547 @default.
- W4323042767 hasConcept C41008148 @default.
- W4323042767 hasConcept C45804977 @default.
- W4323042767 hasConcept C48921125 @default.
- W4323042767 hasConcept C50644808 @default.
- W4323042767 hasConcept C83546350 @default.
- W4323042767 hasConceptScore W4323042767C105795698 @default.
- W4323042767 hasConceptScore W4323042767C107365816 @default.
- W4323042767 hasConceptScore W4323042767C110332635 @default.
- W4323042767 hasConceptScore W4323042767C119857082 @default.
- W4323042767 hasConceptScore W4323042767C128990827 @default.
- W4323042767 hasConceptScore W4323042767C139945424 @default.
- W4323042767 hasConceptScore W4323042767C150217764 @default.
- W4323042767 hasConceptScore W4323042767C152877465 @default.
- W4323042767 hasConceptScore W4323042767C154945302 @default.
- W4323042767 hasConceptScore W4323042767C159985019 @default.
- W4323042767 hasConceptScore W4323042767C192562407 @default.
- W4323042767 hasConceptScore W4323042767C33923547 @default.
- W4323042767 hasConceptScore W4323042767C41008148 @default.
- W4323042767 hasConceptScore W4323042767C45804977 @default.
- W4323042767 hasConceptScore W4323042767C48921125 @default.
- W4323042767 hasConceptScore W4323042767C50644808 @default.
- W4323042767 hasConceptScore W4323042767C83546350 @default.
- W4323042767 hasLocation W43230427671 @default.
- W4323042767 hasOpenAccess W4323042767 @default.
- W4323042767 hasPrimaryLocation W43230427671 @default.
- W4323042767 hasRelatedWork W1230133629 @default.
- W4323042767 hasRelatedWork W1987874405 @default.
- W4323042767 hasRelatedWork W2375721435 @default.
- W4323042767 hasRelatedWork W2598237895 @default.
- W4323042767 hasRelatedWork W2617105262 @default.
- W4323042767 hasRelatedWork W2966251753 @default.
- W4323042767 hasRelatedWork W2990830163 @default.
- W4323042767 hasRelatedWork W4285406654 @default.
- W4323042767 hasRelatedWork W4323042767 @default.
- W4323042767 hasRelatedWork W4382651802 @default.
- W4323042767 isParatext "false" @default.
- W4323042767 isRetracted "false" @default.