Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323044186> ?p ?o ?g. }
- W4323044186 endingPage "119730" @default.
- W4323044186 startingPage "119730" @default.
- W4323044186 abstract "Aspect-level sentiment classification still remains a challenge: how to capture contextual semantic correlation between aspect word and content words more effectively. LSTM-SNP is a variant of long short-term memory (LSTM), inspired from nonlinear spiking mechanisms in nonlinear spiking neural P systems. To address the challenge, we develop a modification of LSTM-SNP and design a bidirectional LSTM-SNP based on the modification, termed as BiLSTM-SNP. Based on BiLSTM-SNP and attention mechanism, we propose a novel method for aspect-level sentiment classification. BiLSTM-SNP is used to capture semantic correlation between aspect word and content words, while attention mechanism is utilized to generate appropriate attention weights for hidden states of BiLSTM-SNP. Experiments on English and Chinese data sets are conducted on the proposed model and several baseline models. Experiment results on English and Chinese data sets demonstrate the effectiveness of the proposed model for aspect-level sentiment classification." @default.
- W4323044186 created "2023-03-04" @default.
- W4323044186 creator A5000510528 @default.
- W4323044186 creator A5032229704 @default.
- W4323044186 creator A5042241049 @default.
- W4323044186 creator A5043904334 @default.
- W4323044186 creator A5059695510 @default.
- W4323044186 creator A5071497082 @default.
- W4323044186 date "2023-07-01" @default.
- W4323044186 modified "2023-10-05" @default.
- W4323044186 title "Sentiment classification using bidirectional LSTM-SNP model and attention mechanism" @default.
- W4323044186 cites W2064675550 @default.
- W4323044186 cites W2211192759 @default.
- W4323044186 cites W2251124635 @default.
- W4323044186 cites W2252057809 @default.
- W4323044186 cites W2306941105 @default.
- W4323044186 cites W2562607067 @default.
- W4323044186 cites W2587410125 @default.
- W4323044186 cites W2605145284 @default.
- W4323044186 cites W2745632920 @default.
- W4323044186 cites W2897397294 @default.
- W4323044186 cites W2898296895 @default.
- W4323044186 cites W2907778281 @default.
- W4323044186 cites W2955260208 @default.
- W4323044186 cites W2963168371 @default.
- W4323044186 cites W2971088231 @default.
- W4323044186 cites W2976653314 @default.
- W4323044186 cites W2990055902 @default.
- W4323044186 cites W2991433488 @default.
- W4323044186 cites W2996272389 @default.
- W4323044186 cites W2998964503 @default.
- W4323044186 cites W2999606367 @default.
- W4323044186 cites W3003681195 @default.
- W4323044186 cites W3017199621 @default.
- W4323044186 cites W3044187822 @default.
- W4323044186 cites W3082412894 @default.
- W4323044186 cites W3128627341 @default.
- W4323044186 cites W3133516872 @default.
- W4323044186 cites W3190268244 @default.
- W4323044186 cites W3194889071 @default.
- W4323044186 cites W3211069630 @default.
- W4323044186 cites W3215933741 @default.
- W4323044186 cites W4210293141 @default.
- W4323044186 cites W4212852237 @default.
- W4323044186 cites W4226024546 @default.
- W4323044186 cites W4229029974 @default.
- W4323044186 cites W4286511705 @default.
- W4323044186 cites W4289260438 @default.
- W4323044186 cites W4313680752 @default.
- W4323044186 doi "https://doi.org/10.1016/j.eswa.2023.119730" @default.
- W4323044186 hasPublicationYear "2023" @default.
- W4323044186 type Work @default.
- W4323044186 citedByCount "6" @default.
- W4323044186 countsByYear W43230441862023 @default.
- W4323044186 crossrefType "journal-article" @default.
- W4323044186 hasAuthorship W4323044186A5000510528 @default.
- W4323044186 hasAuthorship W4323044186A5032229704 @default.
- W4323044186 hasAuthorship W4323044186A5042241049 @default.
- W4323044186 hasAuthorship W4323044186A5043904334 @default.
- W4323044186 hasAuthorship W4323044186A5059695510 @default.
- W4323044186 hasAuthorship W4323044186A5071497082 @default.
- W4323044186 hasConcept C104317684 @default.
- W4323044186 hasConcept C111472728 @default.
- W4323044186 hasConcept C119857082 @default.
- W4323044186 hasConcept C135763542 @default.
- W4323044186 hasConcept C138885662 @default.
- W4323044186 hasConcept C139275648 @default.
- W4323044186 hasConcept C153180895 @default.
- W4323044186 hasConcept C153209595 @default.
- W4323044186 hasConcept C154945302 @default.
- W4323044186 hasConcept C185592680 @default.
- W4323044186 hasConcept C204321447 @default.
- W4323044186 hasConcept C41008148 @default.
- W4323044186 hasConcept C41895202 @default.
- W4323044186 hasConcept C55493867 @default.
- W4323044186 hasConcept C89611455 @default.
- W4323044186 hasConcept C90805587 @default.
- W4323044186 hasConceptScore W4323044186C104317684 @default.
- W4323044186 hasConceptScore W4323044186C111472728 @default.
- W4323044186 hasConceptScore W4323044186C119857082 @default.
- W4323044186 hasConceptScore W4323044186C135763542 @default.
- W4323044186 hasConceptScore W4323044186C138885662 @default.
- W4323044186 hasConceptScore W4323044186C139275648 @default.
- W4323044186 hasConceptScore W4323044186C153180895 @default.
- W4323044186 hasConceptScore W4323044186C153209595 @default.
- W4323044186 hasConceptScore W4323044186C154945302 @default.
- W4323044186 hasConceptScore W4323044186C185592680 @default.
- W4323044186 hasConceptScore W4323044186C204321447 @default.
- W4323044186 hasConceptScore W4323044186C41008148 @default.
- W4323044186 hasConceptScore W4323044186C41895202 @default.
- W4323044186 hasConceptScore W4323044186C55493867 @default.
- W4323044186 hasConceptScore W4323044186C89611455 @default.
- W4323044186 hasConceptScore W4323044186C90805587 @default.
- W4323044186 hasLocation W43230441861 @default.
- W4323044186 hasOpenAccess W4323044186 @default.
- W4323044186 hasPrimaryLocation W43230441861 @default.
- W4323044186 hasRelatedWork W2360025963 @default.
- W4323044186 hasRelatedWork W2370299677 @default.