Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323044453> ?p ?o ?g. }
- W4323044453 endingPage "2753" @default.
- W4323044453 startingPage "2753" @default.
- W4323044453 abstract "Quantum machine learning (QML) has attracted significant research attention over the last decade. Multiple models have been developed to demonstrate the practical applications of the quantum properties. In this study, we first demonstrate that the previously proposed quanvolutional neural network (QuanvNN) using a randomly generated quantum circuit improves the image classification accuracy of a fully connected neural network against the Modified National Institute of Standards and Technology (MNIST) dataset and the Canadian Institute for Advanced Research 10 class (CIFAR-10) dataset from 92.0% to 93.0% and from 30.5% to 34.9%, respectively. We then propose a new model referred to as a Neural Network with Quantum Entanglement (NNQE) using a strongly entangled quantum circuit combined with Hadamard gates. The new model further improves the image classification accuracy of MNIST and CIFAR-10 to 93.8% and 36.0%, respectively. Unlike other QML methods, the proposed method does not require optimization of the parameters inside the quantum circuits; hence, it requires only limited use of the quantum circuit. Given the small number of qubits and relatively shallow depth of the proposed quantum circuit, the proposed method is well suited for implementation in noisy intermediate-scale quantum computers. While promising results were obtained by the proposed method when applied to the MNIST and CIFAR-10 datasets, a test against a more complicated German Traffic Sign Recognition Benchmark (GTSRB) dataset degraded the image classification accuracy from 82.2% to 73.4%. The exact causes of the performance improvement and degradation are currently an open question, prompting further research on the understanding and design of suitable quantum circuits for image classification neural networks for colored and complex data." @default.
- W4323044453 created "2023-03-04" @default.
- W4323044453 creator A5009246075 @default.
- W4323044453 creator A5016211645 @default.
- W4323044453 creator A5028530736 @default.
- W4323044453 creator A5046362015 @default.
- W4323044453 creator A5061196282 @default.
- W4323044453 creator A5065141057 @default.
- W4323044453 date "2023-03-02" @default.
- W4323044453 modified "2023-09-27" @default.
- W4323044453 title "Accurate Image Multi-Class Classification Neural Network Model with Quantum Entanglement Approach" @default.
- W4323044453 cites W2112796928 @default.
- W4323044453 cites W2117876524 @default.
- W4323044453 cites W2125085157 @default.
- W4323044453 cites W2792946961 @default.
- W4323044453 cites W3007475506 @default.
- W4323044453 cites W3020439231 @default.
- W4323044453 cites W3045093737 @default.
- W4323044453 cites W3075559820 @default.
- W4323044453 cites W3101122608 @default.
- W4323044453 cites W3101427288 @default.
- W4323044453 cites W3102227919 @default.
- W4323044453 cites W3124579796 @default.
- W4323044453 cites W3138766979 @default.
- W4323044453 cites W3181153658 @default.
- W4323044453 cites W3198350258 @default.
- W4323044453 cites W3209237089 @default.
- W4323044453 cites W3214007446 @default.
- W4323044453 cites W4302016026 @default.
- W4323044453 cites W4312080395 @default.
- W4323044453 cites W4376983366 @default.
- W4323044453 doi "https://doi.org/10.3390/s23052753" @default.
- W4323044453 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36904951" @default.
- W4323044453 hasPublicationYear "2023" @default.
- W4323044453 type Work @default.
- W4323044453 citedByCount "3" @default.
- W4323044453 countsByYear W43230444532023 @default.
- W4323044453 crossrefType "journal-article" @default.
- W4323044453 hasAuthorship W4323044453A5009246075 @default.
- W4323044453 hasAuthorship W4323044453A5016211645 @default.
- W4323044453 hasAuthorship W4323044453A5028530736 @default.
- W4323044453 hasAuthorship W4323044453A5046362015 @default.
- W4323044453 hasAuthorship W4323044453A5061196282 @default.
- W4323044453 hasAuthorship W4323044453A5065141057 @default.
- W4323044453 hasBestOaLocation W43230444531 @default.
- W4323044453 hasConcept C113775141 @default.
- W4323044453 hasConcept C11413529 @default.
- W4323044453 hasConcept C115961682 @default.
- W4323044453 hasConcept C121040770 @default.
- W4323044453 hasConcept C121332964 @default.
- W4323044453 hasConcept C124148022 @default.
- W4323044453 hasConcept C13280743 @default.
- W4323044453 hasConcept C153180895 @default.
- W4323044453 hasConcept C154945302 @default.
- W4323044453 hasConcept C185798385 @default.
- W4323044453 hasConcept C190502265 @default.
- W4323044453 hasConcept C203087015 @default.
- W4323044453 hasConcept C205649164 @default.
- W4323044453 hasConcept C41008148 @default.
- W4323044453 hasConcept C50644808 @default.
- W4323044453 hasConcept C51003876 @default.
- W4323044453 hasConcept C58053490 @default.
- W4323044453 hasConcept C58849907 @default.
- W4323044453 hasConcept C62520636 @default.
- W4323044453 hasConcept C75294576 @default.
- W4323044453 hasConcept C84114770 @default.
- W4323044453 hasConceptScore W4323044453C113775141 @default.
- W4323044453 hasConceptScore W4323044453C11413529 @default.
- W4323044453 hasConceptScore W4323044453C115961682 @default.
- W4323044453 hasConceptScore W4323044453C121040770 @default.
- W4323044453 hasConceptScore W4323044453C121332964 @default.
- W4323044453 hasConceptScore W4323044453C124148022 @default.
- W4323044453 hasConceptScore W4323044453C13280743 @default.
- W4323044453 hasConceptScore W4323044453C153180895 @default.
- W4323044453 hasConceptScore W4323044453C154945302 @default.
- W4323044453 hasConceptScore W4323044453C185798385 @default.
- W4323044453 hasConceptScore W4323044453C190502265 @default.
- W4323044453 hasConceptScore W4323044453C203087015 @default.
- W4323044453 hasConceptScore W4323044453C205649164 @default.
- W4323044453 hasConceptScore W4323044453C41008148 @default.
- W4323044453 hasConceptScore W4323044453C50644808 @default.
- W4323044453 hasConceptScore W4323044453C51003876 @default.
- W4323044453 hasConceptScore W4323044453C58053490 @default.
- W4323044453 hasConceptScore W4323044453C58849907 @default.
- W4323044453 hasConceptScore W4323044453C62520636 @default.
- W4323044453 hasConceptScore W4323044453C75294576 @default.
- W4323044453 hasConceptScore W4323044453C84114770 @default.
- W4323044453 hasIssue "5" @default.
- W4323044453 hasLocation W43230444531 @default.
- W4323044453 hasLocation W43230444532 @default.
- W4323044453 hasLocation W43230444533 @default.
- W4323044453 hasOpenAccess W4323044453 @default.
- W4323044453 hasPrimaryLocation W43230444531 @default.
- W4323044453 hasRelatedWork W1981303046 @default.
- W4323044453 hasRelatedWork W2742991909 @default.
- W4323044453 hasRelatedWork W2955302636 @default.
- W4323044453 hasRelatedWork W2980678955 @default.
- W4323044453 hasRelatedWork W3153890342 @default.