Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323046987> ?p ?o ?g. }
- W4323046987 endingPage "103441" @default.
- W4323046987 startingPage "103441" @default.
- W4323046987 abstract "This paper develops a novel failure probability-based global sensitivity index by introducing the Bayes formula into the moment-independent global sensitivity index to approximate the effect of input random variables or stochastic processes on the time-variant reliability. The proposed global sensitivity index can estimate the effect of uncertain inputs on the time-variant reliability by comparing the difference between the unconditional probability density function of input variables and the conditional probability density function in failure state of input variables. Furthermore, a single-loop active learning Kriging method combined with metamodel-based importance sampling is employed to improve the computational efficiency. The accuracy of the results obtained by Kriging model is verified by the reference results provided by the Monte Carlo simulation. Four examples are investigated to demonstrate the significance of the proposed failure probability-based global sensitivity index and the effectiveness of the computational method." @default.
- W4323046987 created "2023-03-04" @default.
- W4323046987 creator A5008133679 @default.
- W4323046987 creator A5043798222 @default.
- W4323046987 creator A5054890946 @default.
- W4323046987 creator A5060024268 @default.
- W4323046987 creator A5080713860 @default.
- W4323046987 date "2023-04-01" @default.
- W4323046987 modified "2023-10-12" @default.
- W4323046987 title "Time-variant reliability global sensitivity analysis with single-loop Kriging model combined with importance sampling" @default.
- W4323046987 cites W1510052597 @default.
- W4323046987 cites W1928195746 @default.
- W4323046987 cites W1975369035 @default.
- W4323046987 cites W1976955407 @default.
- W4323046987 cites W1978031052 @default.
- W4323046987 cites W1989648449 @default.
- W4323046987 cites W1991317455 @default.
- W4323046987 cites W1994080277 @default.
- W4323046987 cites W1995565517 @default.
- W4323046987 cites W2014017759 @default.
- W4323046987 cites W2029767409 @default.
- W4323046987 cites W2049159661 @default.
- W4323046987 cites W2069233750 @default.
- W4323046987 cites W2070098157 @default.
- W4323046987 cites W2072897170 @default.
- W4323046987 cites W2073344030 @default.
- W4323046987 cites W2073407183 @default.
- W4323046987 cites W2097718805 @default.
- W4323046987 cites W2114509411 @default.
- W4323046987 cites W2338207464 @default.
- W4323046987 cites W2528487276 @default.
- W4323046987 cites W2749232743 @default.
- W4323046987 cites W2767537294 @default.
- W4323046987 cites W2794318402 @default.
- W4323046987 cites W2799464179 @default.
- W4323046987 cites W2802193620 @default.
- W4323046987 cites W2807249632 @default.
- W4323046987 cites W2811199347 @default.
- W4323046987 cites W2816702355 @default.
- W4323046987 cites W2891383372 @default.
- W4323046987 cites W2959352224 @default.
- W4323046987 cites W2999530351 @default.
- W4323046987 cites W3004615908 @default.
- W4323046987 cites W3024998422 @default.
- W4323046987 cites W3038120922 @default.
- W4323046987 cites W3041879830 @default.
- W4323046987 cites W3046039206 @default.
- W4323046987 cites W3080868274 @default.
- W4323046987 cites W3087511474 @default.
- W4323046987 cites W3091340434 @default.
- W4323046987 cites W3093745974 @default.
- W4323046987 cites W3174761584 @default.
- W4323046987 cites W3184700118 @default.
- W4323046987 cites W4295346524 @default.
- W4323046987 cites W4313442728 @default.
- W4323046987 cites W4315786805 @default.
- W4323046987 doi "https://doi.org/10.1016/j.probengmech.2023.103441" @default.
- W4323046987 hasPublicationYear "2023" @default.
- W4323046987 type Work @default.
- W4323046987 citedByCount "3" @default.
- W4323046987 countsByYear W43230469872023 @default.
- W4323046987 crossrefType "journal-article" @default.
- W4323046987 hasAuthorship W4323046987A5008133679 @default.
- W4323046987 hasAuthorship W4323046987A5043798222 @default.
- W4323046987 hasAuthorship W4323046987A5054890946 @default.
- W4323046987 hasAuthorship W4323046987A5060024268 @default.
- W4323046987 hasAuthorship W4323046987A5080713860 @default.
- W4323046987 hasConcept C105795698 @default.
- W4323046987 hasConcept C107673813 @default.
- W4323046987 hasConcept C121332964 @default.
- W4323046987 hasConcept C122123141 @default.
- W4323046987 hasConcept C126255220 @default.
- W4323046987 hasConcept C127413603 @default.
- W4323046987 hasConcept C131675550 @default.
- W4323046987 hasConcept C163258240 @default.
- W4323046987 hasConcept C179254644 @default.
- W4323046987 hasConcept C19499675 @default.
- W4323046987 hasConcept C197055811 @default.
- W4323046987 hasConcept C207201462 @default.
- W4323046987 hasConcept C21200559 @default.
- W4323046987 hasConcept C24326235 @default.
- W4323046987 hasConcept C33923547 @default.
- W4323046987 hasConcept C41008148 @default.
- W4323046987 hasConcept C43214815 @default.
- W4323046987 hasConcept C52740198 @default.
- W4323046987 hasConcept C62520636 @default.
- W4323046987 hasConcept C74650414 @default.
- W4323046987 hasConcept C81692654 @default.
- W4323046987 hasConceptScore W4323046987C105795698 @default.
- W4323046987 hasConceptScore W4323046987C107673813 @default.
- W4323046987 hasConceptScore W4323046987C121332964 @default.
- W4323046987 hasConceptScore W4323046987C122123141 @default.
- W4323046987 hasConceptScore W4323046987C126255220 @default.
- W4323046987 hasConceptScore W4323046987C127413603 @default.
- W4323046987 hasConceptScore W4323046987C131675550 @default.
- W4323046987 hasConceptScore W4323046987C163258240 @default.
- W4323046987 hasConceptScore W4323046987C179254644 @default.
- W4323046987 hasConceptScore W4323046987C19499675 @default.