Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323047457> ?p ?o ?g. }
- W4323047457 endingPage "232" @default.
- W4323047457 startingPage "224" @default.
- W4323047457 abstract "A multi-principal element alloy (MPEA) is a type of metallic alloy that is composed of multiple metallic elements, with each element making up a significant portion of the alloy. In this study, the initial atomic percentage of elements in an (AlFeNiTiVZr)1-xCrx MPEA alloy as a function of the position on the surface was investigated using machine learning algorithms. Given the absence of a linear relationship between the atomic percentage of elements and their location on the surface, it is not possible to discern any clear association from the dataset. To overcome this non-linear relationship, the prediction of the atomic percentage of elements was accomplished using both decision tree (DT) and random forest (RF) regression models. The models were compared, and the results were found to be consistent with the experimental findings (a coefficient of determination R2 of 0.98 is obtained with the DT algorithm and 0.99 with the RF one). This research demonstrates the potential of machine learning algorithms in the analysis of wavelength-dispersive X-ray spectroscopy (WDS) datasets." @default.
- W4323047457 created "2023-03-04" @default.
- W4323047457 creator A5010563098 @default.
- W4323047457 date "2023-03-03" @default.
- W4323047457 modified "2023-10-14" @default.
- W4323047457 title "Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy" @default.
- W4323047457 cites W1999395192 @default.
- W4323047457 cites W2072612262 @default.
- W4323047457 cites W2080562691 @default.
- W4323047457 cites W2091560152 @default.
- W4323047457 cites W2094491269 @default.
- W4323047457 cites W2161508873 @default.
- W4323047457 cites W2261059368 @default.
- W4323047457 cites W2605516844 @default.
- W4323047457 cites W2778314063 @default.
- W4323047457 cites W2802652936 @default.
- W4323047457 cites W2915626801 @default.
- W4323047457 cites W3001604145 @default.
- W4323047457 cites W3034428338 @default.
- W4323047457 cites W3038033549 @default.
- W4323047457 cites W3044404206 @default.
- W4323047457 cites W3115089459 @default.
- W4323047457 cites W3119462785 @default.
- W4323047457 cites W3141768603 @default.
- W4323047457 cites W3158907067 @default.
- W4323047457 cites W3162663055 @default.
- W4323047457 cites W3172720573 @default.
- W4323047457 cites W3182706339 @default.
- W4323047457 cites W4200274854 @default.
- W4323047457 cites W4210439042 @default.
- W4323047457 cites W4213049716 @default.
- W4323047457 cites W4234971943 @default.
- W4323047457 cites W4285404372 @default.
- W4323047457 cites W4307040098 @default.
- W4323047457 cites W4308932013 @default.
- W4323047457 cites W4310762618 @default.
- W4323047457 cites W4312085106 @default.
- W4323047457 cites W4312198916 @default.
- W4323047457 cites W4313252789 @default.
- W4323047457 cites W4313574600 @default.
- W4323047457 doi "https://doi.org/10.3390/compounds3010018" @default.
- W4323047457 hasPublicationYear "2023" @default.
- W4323047457 type Work @default.
- W4323047457 citedByCount "2" @default.
- W4323047457 countsByYear W43230474572023 @default.
- W4323047457 crossrefType "journal-article" @default.
- W4323047457 hasAuthorship W4323047457A5010563098 @default.
- W4323047457 hasBestOaLocation W43230474571 @default.
- W4323047457 hasConcept C10138342 @default.
- W4323047457 hasConcept C113196181 @default.
- W4323047457 hasConcept C11413529 @default.
- W4323047457 hasConcept C119857082 @default.
- W4323047457 hasConcept C121332964 @default.
- W4323047457 hasConcept C138885662 @default.
- W4323047457 hasConcept C154945302 @default.
- W4323047457 hasConcept C162324750 @default.
- W4323047457 hasConcept C169258074 @default.
- W4323047457 hasConcept C185592680 @default.
- W4323047457 hasConcept C191897082 @default.
- W4323047457 hasConcept C192562407 @default.
- W4323047457 hasConcept C198082294 @default.
- W4323047457 hasConcept C2524010 @default.
- W4323047457 hasConcept C27438332 @default.
- W4323047457 hasConcept C2776799497 @default.
- W4323047457 hasConcept C2780026712 @default.
- W4323047457 hasConcept C32891209 @default.
- W4323047457 hasConcept C33923547 @default.
- W4323047457 hasConcept C40231798 @default.
- W4323047457 hasConcept C41008148 @default.
- W4323047457 hasConcept C41895202 @default.
- W4323047457 hasConcept C43617362 @default.
- W4323047457 hasConcept C48921125 @default.
- W4323047457 hasConcept C62520636 @default.
- W4323047457 hasConcept C84525736 @default.
- W4323047457 hasConceptScore W4323047457C10138342 @default.
- W4323047457 hasConceptScore W4323047457C113196181 @default.
- W4323047457 hasConceptScore W4323047457C11413529 @default.
- W4323047457 hasConceptScore W4323047457C119857082 @default.
- W4323047457 hasConceptScore W4323047457C121332964 @default.
- W4323047457 hasConceptScore W4323047457C138885662 @default.
- W4323047457 hasConceptScore W4323047457C154945302 @default.
- W4323047457 hasConceptScore W4323047457C162324750 @default.
- W4323047457 hasConceptScore W4323047457C169258074 @default.
- W4323047457 hasConceptScore W4323047457C185592680 @default.
- W4323047457 hasConceptScore W4323047457C191897082 @default.
- W4323047457 hasConceptScore W4323047457C192562407 @default.
- W4323047457 hasConceptScore W4323047457C198082294 @default.
- W4323047457 hasConceptScore W4323047457C2524010 @default.
- W4323047457 hasConceptScore W4323047457C27438332 @default.
- W4323047457 hasConceptScore W4323047457C2776799497 @default.
- W4323047457 hasConceptScore W4323047457C2780026712 @default.
- W4323047457 hasConceptScore W4323047457C32891209 @default.
- W4323047457 hasConceptScore W4323047457C33923547 @default.
- W4323047457 hasConceptScore W4323047457C40231798 @default.
- W4323047457 hasConceptScore W4323047457C41008148 @default.
- W4323047457 hasConceptScore W4323047457C41895202 @default.
- W4323047457 hasConceptScore W4323047457C43617362 @default.
- W4323047457 hasConceptScore W4323047457C48921125 @default.