Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323049033> ?p ?o ?g. }
- W4323049033 abstract "Primary study aim was defining prevalence of obesity, physical activity levels, digital game addiction level in adolescents, to investigate gender differences, relationships between outcomes. Second aim was predicting game addiction based on anthropometric measurements, physical activity levels. Cross-sectional study design was implemented. Participants aged 9-14 living in Kirikkale were part of the study. The sample of the study consists of 405 adolescents, 231 girls (57%) and 174 boys (43%). Self-reported data were collected by questionnaire method from a random sample of 405 adolescent participants. To determine the physical activity levels of children, the Physical Activity Questionnaire for Older Children (PAQ-C). Digital Game addiction was evaluated with the digital game addiction (DGA) scale. Additionally, body mass index (BMI) status was calculated by measuring the height and body mass of the participants. Data analysis were performed using Python 3.9 software and SPSS 28.0 (IBM Corp., Armonk, NY, United States) package program. According to our findings, it was determined that digital game addiction has a negative relationship with physical activity level. It was determined that physical activity level had a negative relationship with BMI. In addition, increased physical activity level was found to reduce obesity and DGA. Game addiction levels of girl participants were significantly higher than boy participants, and game addiction was higher in those with obesity. With the prediction model obtained, it was determined that age, being girls, BMI and total physical activity (TPA) scores were predictors of game addiction. The results revealed that the increase in age and BMI increased the risk of DGA, and we found that women had a 2.59 times greater risk of DGA compared to men. More importantly, the findings of this study showed that physical activity was an important factor reducing DGA 1.51-fold. Our prediction model Logit (P) = 1/(1 + exp(-(-3.384 + Age*0.124 + Gender-boys*(-0.953) + BMI*0.145 + TPA*(-0.410)))). Regular physical activity should be encouraged, digital gaming hours can be limited to maintain ideal weight. Furthermore, adolescents should be encouraged to engage in physical activity to reduce digital game addiction level. As a contribution to the field, the findings of this study presented important results that may help in the prevention of adolescent game addiction." @default.
- W4323049033 created "2023-03-04" @default.
- W4323049033 creator A5002978290 @default.
- W4323049033 creator A5014241862 @default.
- W4323049033 creator A5043958493 @default.
- W4323049033 creator A5046745413 @default.
- W4323049033 creator A5067907539 @default.
- W4323049033 creator A5068266907 @default.
- W4323049033 creator A5072751648 @default.
- W4323049033 creator A5074509662 @default.
- W4323049033 creator A5078575086 @default.
- W4323049033 creator A5082916759 @default.
- W4323049033 date "2023-03-03" @default.
- W4323049033 modified "2023-10-06" @default.
- W4323049033 title "Exploring obesity, physical activity, and digital game addiction levels among adolescents: A study on machine learning-based prediction of digital game addiction" @default.
- W4323049033 cites W1606147857 @default.
- W4323049033 cites W1924832216 @default.
- W4323049033 cites W1987919544 @default.
- W4323049033 cites W1995874166 @default.
- W4323049033 cites W2027985530 @default.
- W4323049033 cites W2037427175 @default.
- W4323049033 cites W2040106495 @default.
- W4323049033 cites W2046421131 @default.
- W4323049033 cites W2079882713 @default.
- W4323049033 cites W2087484885 @default.
- W4323049033 cites W2093013657 @default.
- W4323049033 cites W2114796974 @default.
- W4323049033 cites W2123683822 @default.
- W4323049033 cites W2123840543 @default.
- W4323049033 cites W2125177300 @default.
- W4323049033 cites W2126380138 @default.
- W4323049033 cites W2130834134 @default.
- W4323049033 cites W2134599820 @default.
- W4323049033 cites W2139215620 @default.
- W4323049033 cites W2139469886 @default.
- W4323049033 cites W2142894074 @default.
- W4323049033 cites W2155524964 @default.
- W4323049033 cites W2161520320 @default.
- W4323049033 cites W2169821389 @default.
- W4323049033 cites W2181738699 @default.
- W4323049033 cites W2275737843 @default.
- W4323049033 cites W2315562686 @default.
- W4323049033 cites W2616385997 @default.
- W4323049033 cites W2619052117 @default.
- W4323049033 cites W2687269839 @default.
- W4323049033 cites W2762689525 @default.
- W4323049033 cites W2772482629 @default.
- W4323049033 cites W2792792601 @default.
- W4323049033 cites W2809750954 @default.
- W4323049033 cites W2822409213 @default.
- W4323049033 cites W2913289165 @default.
- W4323049033 cites W2946197172 @default.
- W4323049033 cites W3000481573 @default.
- W4323049033 cites W3007066719 @default.
- W4323049033 cites W3030134066 @default.
- W4323049033 cites W3084389396 @default.
- W4323049033 cites W3087246485 @default.
- W4323049033 cites W3096390905 @default.
- W4323049033 cites W3137689410 @default.
- W4323049033 cites W3162626942 @default.
- W4323049033 cites W3166711341 @default.
- W4323049033 cites W3177419021 @default.
- W4323049033 cites W3197060557 @default.
- W4323049033 cites W3199570647 @default.
- W4323049033 cites W3201266848 @default.
- W4323049033 cites W3212566162 @default.
- W4323049033 cites W4223949956 @default.
- W4323049033 cites W4285042792 @default.
- W4323049033 cites W4293481492 @default.
- W4323049033 doi "https://doi.org/10.3389/fpsyg.2023.1097145" @default.
- W4323049033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36936011" @default.
- W4323049033 hasPublicationYear "2023" @default.
- W4323049033 type Work @default.
- W4323049033 citedByCount "4" @default.
- W4323049033 countsByYear W43230490332023 @default.
- W4323049033 crossrefType "journal-article" @default.
- W4323049033 hasAuthorship W4323049033A5002978290 @default.
- W4323049033 hasAuthorship W4323049033A5014241862 @default.
- W4323049033 hasAuthorship W4323049033A5043958493 @default.
- W4323049033 hasAuthorship W4323049033A5046745413 @default.
- W4323049033 hasAuthorship W4323049033A5067907539 @default.
- W4323049033 hasAuthorship W4323049033A5068266907 @default.
- W4323049033 hasAuthorship W4323049033A5072751648 @default.
- W4323049033 hasAuthorship W4323049033A5074509662 @default.
- W4323049033 hasAuthorship W4323049033A5078575086 @default.
- W4323049033 hasAuthorship W4323049033A5082916759 @default.
- W4323049033 hasBestOaLocation W43230490331 @default.
- W4323049033 hasConcept C118552586 @default.
- W4323049033 hasConcept C126322002 @default.
- W4323049033 hasConcept C138496976 @default.
- W4323049033 hasConcept C142724271 @default.
- W4323049033 hasConcept C15744967 @default.
- W4323049033 hasConcept C1862650 @default.
- W4323049033 hasConcept C2780221984 @default.
- W4323049033 hasConcept C3020255362 @default.
- W4323049033 hasConcept C48856860 @default.
- W4323049033 hasConcept C511355011 @default.
- W4323049033 hasConcept C70410870 @default.
- W4323049033 hasConcept C71924100 @default.
- W4323049033 hasConceptScore W4323049033C118552586 @default.