Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323050584> ?p ?o ?g. }
- W4323050584 endingPage "111500" @default.
- W4323050584 startingPage "111500" @default.
- W4323050584 abstract "Machine learning models were developed to predict the degree of rancidity of beef by a non-destructive method using a near infrared hyperspectral image acquisition system. The beef subject to the experiment was naturally oxidized during the 15-day cooling process. In a darkroom environment, hyperspectral data cubes were collected using a data acquisition device. Additionally, a technique was developed to selectively extract lean-meat spectra from hyperspectral data obtained from beef that was refrigerated for a variety of lengths of time. Thiobarbituric acid reactive substances (TBARS) experiment was performed in a traditional method to secure reference values for the rancidity level of the sample. Spectra were extracted through data selection and separated by training set and test set. PLSR, ANN, and 1D-CNN techniques were applied to model development. Variable Importance in Projection (VIP) score for the wavelength band was calculated, and the portion judged as valid was cut out to generate a reduced data set. Chemical maps were created for each developed model to visualize the performance of the model. As a result of the development, it was confirmed that the rancidity level of beef could be predicted through a model generated by hyperspectral data." @default.
- W4323050584 created "2023-03-04" @default.
- W4323050584 creator A5012155338 @default.
- W4323050584 creator A5020420094 @default.
- W4323050584 creator A5037894082 @default.
- W4323050584 creator A5045463277 @default.
- W4323050584 creator A5080217028 @default.
- W4323050584 date "2023-08-01" @default.
- W4323050584 modified "2023-09-27" @default.
- W4323050584 title "VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle" @default.
- W4323050584 cites W1534067962 @default.
- W4323050584 cites W1541175366 @default.
- W4323050584 cites W1575263369 @default.
- W4323050584 cites W1965686535 @default.
- W4323050584 cites W1965786993 @default.
- W4323050584 cites W1966838361 @default.
- W4323050584 cites W1971077749 @default.
- W4323050584 cites W1979953275 @default.
- W4323050584 cites W1984350187 @default.
- W4323050584 cites W1984545943 @default.
- W4323050584 cites W1995966489 @default.
- W4323050584 cites W2001500550 @default.
- W4323050584 cites W2004125248 @default.
- W4323050584 cites W2005752359 @default.
- W4323050584 cites W2011052563 @default.
- W4323050584 cites W2020752154 @default.
- W4323050584 cites W2025870492 @default.
- W4323050584 cites W2027436121 @default.
- W4323050584 cites W2033737334 @default.
- W4323050584 cites W2037031077 @default.
- W4323050584 cites W2037112851 @default.
- W4323050584 cites W2038676912 @default.
- W4323050584 cites W2045125597 @default.
- W4323050584 cites W2047239547 @default.
- W4323050584 cites W2049267270 @default.
- W4323050584 cites W2050515401 @default.
- W4323050584 cites W2050629920 @default.
- W4323050584 cites W2063096483 @default.
- W4323050584 cites W2065732259 @default.
- W4323050584 cites W2066543810 @default.
- W4323050584 cites W2067347588 @default.
- W4323050584 cites W2069589446 @default.
- W4323050584 cites W2070952520 @default.
- W4323050584 cites W2073062570 @default.
- W4323050584 cites W2076949308 @default.
- W4323050584 cites W2077363035 @default.
- W4323050584 cites W2083963128 @default.
- W4323050584 cites W2084812239 @default.
- W4323050584 cites W2089069118 @default.
- W4323050584 cites W2122615030 @default.
- W4323050584 cites W2130499578 @default.
- W4323050584 cites W2171084120 @default.
- W4323050584 cites W2173229127 @default.
- W4323050584 cites W2189355247 @default.
- W4323050584 cites W2192284914 @default.
- W4323050584 cites W2495971917 @default.
- W4323050584 cites W2499711023 @default.
- W4323050584 cites W2592647024 @default.
- W4323050584 cites W2752929991 @default.
- W4323050584 cites W2769689104 @default.
- W4323050584 cites W2793536557 @default.
- W4323050584 cites W2883273084 @default.
- W4323050584 cites W2897795150 @default.
- W4323050584 cites W2900508396 @default.
- W4323050584 cites W2905421928 @default.
- W4323050584 cites W2941266058 @default.
- W4323050584 cites W2944944470 @default.
- W4323050584 cites W2945879852 @default.
- W4323050584 cites W2953684782 @default.
- W4323050584 cites W2966742771 @default.
- W4323050584 cites W2979818891 @default.
- W4323050584 cites W3005709179 @default.
- W4323050584 cites W3007197850 @default.
- W4323050584 cites W3011496173 @default.
- W4323050584 cites W3023057433 @default.
- W4323050584 cites W3027139020 @default.
- W4323050584 cites W3045739223 @default.
- W4323050584 cites W3123410053 @default.
- W4323050584 cites W3173870734 @default.
- W4323050584 cites W3210124172 @default.
- W4323050584 cites W4205882084 @default.
- W4323050584 cites W4210540019 @default.
- W4323050584 cites W773242161 @default.
- W4323050584 doi "https://doi.org/10.1016/j.jfoodeng.2023.111500" @default.
- W4323050584 hasPublicationYear "2023" @default.
- W4323050584 type Work @default.
- W4323050584 citedByCount "2" @default.
- W4323050584 countsByYear W43230505842023 @default.
- W4323050584 crossrefType "journal-article" @default.
- W4323050584 hasAuthorship W4323050584A5012155338 @default.
- W4323050584 hasAuthorship W4323050584A5020420094 @default.
- W4323050584 hasAuthorship W4323050584A5037894082 @default.
- W4323050584 hasAuthorship W4323050584A5045463277 @default.
- W4323050584 hasAuthorship W4323050584A5080217028 @default.
- W4323050584 hasConcept C151304367 @default.
- W4323050584 hasConcept C153180895 @default.
- W4323050584 hasConcept C154945302 @default.
- W4323050584 hasConcept C159078339 @default.