Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323058048> ?p ?o ?g. }
- W4323058048 endingPage "765" @default.
- W4323058048 startingPage "751" @default.
- W4323058048 abstract "The condition of cutting tools is affecting the product quality, production cost and profit. Monitoring the condition correctly and accurately is very import in machining industry. In this paper, a tool wear recognition model based on adaptive neural networks with multi-domain feature fusion is presented. First, the vibration signals obtained from the sensors mounted on the working area is processed to generate the time-domain and frequency-domain features, which form a multi-dimension space. Then the core features are identified according to the distance criteria. Finally, LSTM neural network is used to determine the tool wear condition during the machining process by processing the core features. The model is verified by the data collected from industry practical experiments. The results shows that our model can successfully increase the precision of tool wear classification and has certain generalization ability under different working conditions compared with the single eigenvalue prediction method." @default.
- W4323058048 created "2023-03-05" @default.
- W4323058048 creator A5014849051 @default.
- W4323058048 creator A5051945922 @default.
- W4323058048 creator A5077515483 @default.
- W4323058048 date "2023-01-01" @default.
- W4323058048 modified "2023-10-01" @default.
- W4323058048 title "Multi-domain Features Fusion Adaptive Neural Network Tool Wear Recognition Model" @default.
- W4323058048 cites W1983053770 @default.
- W4323058048 cites W1983395927 @default.
- W4323058048 cites W1999314995 @default.
- W4323058048 cites W2010994188 @default.
- W4323058048 cites W2014764114 @default.
- W4323058048 cites W2016606766 @default.
- W4323058048 cites W2020097225 @default.
- W4323058048 cites W2034639599 @default.
- W4323058048 cites W2044682361 @default.
- W4323058048 cites W2045986146 @default.
- W4323058048 cites W2064675550 @default.
- W4323058048 cites W2067102235 @default.
- W4323058048 cites W2076700412 @default.
- W4323058048 cites W2079034501 @default.
- W4323058048 cites W2083468087 @default.
- W4323058048 cites W2125888905 @default.
- W4323058048 cites W2163238883 @default.
- W4323058048 cites W2601600520 @default.
- W4323058048 cites W2735338899 @default.
- W4323058048 cites W2765212055 @default.
- W4323058048 cites W2886374926 @default.
- W4323058048 cites W2902264310 @default.
- W4323058048 cites W2988283825 @default.
- W4323058048 cites W47342859 @default.
- W4323058048 doi "https://doi.org/10.1007/978-3-031-26193-0_66" @default.
- W4323058048 hasPublicationYear "2023" @default.
- W4323058048 type Work @default.
- W4323058048 citedByCount "0" @default.
- W4323058048 crossrefType "book-chapter" @default.
- W4323058048 hasAuthorship W4323058048A5014849051 @default.
- W4323058048 hasAuthorship W4323058048A5051945922 @default.
- W4323058048 hasAuthorship W4323058048A5077515483 @default.
- W4323058048 hasBestOaLocation W43230580482 @default.
- W4323058048 hasConcept C103824480 @default.
- W4323058048 hasConcept C111919701 @default.
- W4323058048 hasConcept C124101348 @default.
- W4323058048 hasConcept C127413603 @default.
- W4323058048 hasConcept C134306372 @default.
- W4323058048 hasConcept C138885662 @default.
- W4323058048 hasConcept C153180895 @default.
- W4323058048 hasConcept C154945302 @default.
- W4323058048 hasConcept C158525013 @default.
- W4323058048 hasConcept C2776401178 @default.
- W4323058048 hasConcept C2776450708 @default.
- W4323058048 hasConcept C31972630 @default.
- W4323058048 hasConcept C33923547 @default.
- W4323058048 hasConcept C36503486 @default.
- W4323058048 hasConcept C41008148 @default.
- W4323058048 hasConcept C41895202 @default.
- W4323058048 hasConcept C50644808 @default.
- W4323058048 hasConcept C523214423 @default.
- W4323058048 hasConcept C78519656 @default.
- W4323058048 hasConcept C83665646 @default.
- W4323058048 hasConcept C98045186 @default.
- W4323058048 hasConceptScore W4323058048C103824480 @default.
- W4323058048 hasConceptScore W4323058048C111919701 @default.
- W4323058048 hasConceptScore W4323058048C124101348 @default.
- W4323058048 hasConceptScore W4323058048C127413603 @default.
- W4323058048 hasConceptScore W4323058048C134306372 @default.
- W4323058048 hasConceptScore W4323058048C138885662 @default.
- W4323058048 hasConceptScore W4323058048C153180895 @default.
- W4323058048 hasConceptScore W4323058048C154945302 @default.
- W4323058048 hasConceptScore W4323058048C158525013 @default.
- W4323058048 hasConceptScore W4323058048C2776401178 @default.
- W4323058048 hasConceptScore W4323058048C2776450708 @default.
- W4323058048 hasConceptScore W4323058048C31972630 @default.
- W4323058048 hasConceptScore W4323058048C33923547 @default.
- W4323058048 hasConceptScore W4323058048C36503486 @default.
- W4323058048 hasConceptScore W4323058048C41008148 @default.
- W4323058048 hasConceptScore W4323058048C41895202 @default.
- W4323058048 hasConceptScore W4323058048C50644808 @default.
- W4323058048 hasConceptScore W4323058048C523214423 @default.
- W4323058048 hasConceptScore W4323058048C78519656 @default.
- W4323058048 hasConceptScore W4323058048C83665646 @default.
- W4323058048 hasConceptScore W4323058048C98045186 @default.
- W4323058048 hasLocation W43230580481 @default.
- W4323058048 hasLocation W43230580482 @default.
- W4323058048 hasOpenAccess W4323058048 @default.
- W4323058048 hasPrimaryLocation W43230580481 @default.
- W4323058048 hasRelatedWork W2049521100 @default.
- W4323058048 hasRelatedWork W2052253960 @default.
- W4323058048 hasRelatedWork W2061785515 @default.
- W4323058048 hasRelatedWork W2147802381 @default.
- W4323058048 hasRelatedWork W2509918103 @default.
- W4323058048 hasRelatedWork W2546942002 @default.
- W4323058048 hasRelatedWork W2785535669 @default.
- W4323058048 hasRelatedWork W3091392023 @default.
- W4323058048 hasRelatedWork W3197541072 @default.
- W4323058048 hasRelatedWork W4242141998 @default.
- W4323058048 isParatext "false" @default.