Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323059932> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4323059932 abstract "Chronic Kidney Disease (CKD), also known as Chronic Renal Disease is considered one of the biggest reasons acting behind deaths in adults all over the globe and the number is escalating throughout the years. At its final stages, treatment of CKD becomes much exorbitant. Machine learning algorithms, for their capabilities to learn from experience, can play a vital role in predicting CKD in its early stages. In this paper, we apply machine learning to predict CKD on the basis of clinical data obtained from the UCI machine learning repository. The dataset has a significant amount of missing values which is handled using K-Nearest Neighbours imputer. The imbalanced dataset has been balanced using Synthetic Minority Oversampling Technique (SMOTE). A Correlation Based Feature Selection (CBFS) and Principal Component Analysis (PCA) is used for feature selection. Later, the dataset is divided into 80% for training, 10% for validation and 10% for testing. Five renowned supervised learning algorithms namely K-Nearest Neighbours (KNN), Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree, Logistic Regression and an Ensemble learning algorithms are used to achieve the prediction. Among these, the ensemble learning algorithm proves to be superior than others on the dataset obtained by CBFS, acquiring an accuracy, precision, recall, and f1-score of 97.41%, 99.52%, 95.27% and 97.33% respectively." @default.
- W4323059932 created "2023-03-05" @default.
- W4323059932 creator A5014734365 @default.
- W4323059932 creator A5017544654 @default.
- W4323059932 creator A5029612579 @default.
- W4323059932 date "2022-12-17" @default.
- W4323059932 modified "2023-10-02" @default.
- W4323059932 title "An Ensemble Learning Approach for Chronic Kidney Disease Prediction Using Different Machine Learning Algorithms with Correlation Based Feature Selection" @default.
- W4323059932 cites W1980903690 @default.
- W4323059932 cites W1990173543 @default.
- W4323059932 cites W2072550989 @default.
- W4323059932 cites W2464795325 @default.
- W4323059932 cites W2761207182 @default.
- W4323059932 cites W2765995359 @default.
- W4323059932 cites W2784081781 @default.
- W4323059932 cites W2802379619 @default.
- W4323059932 cites W2804880211 @default.
- W4323059932 cites W2887025900 @default.
- W4323059932 cites W2895906293 @default.
- W4323059932 cites W2933013505 @default.
- W4323059932 cites W2940010972 @default.
- W4323059932 cites W2940596626 @default.
- W4323059932 cites W2955086442 @default.
- W4323059932 cites W2982215737 @default.
- W4323059932 cites W2997919088 @default.
- W4323059932 cites W3004188698 @default.
- W4323059932 cites W3011408237 @default.
- W4323059932 cites W3036657808 @default.
- W4323059932 cites W3125584267 @default.
- W4323059932 cites W3173980001 @default.
- W4323059932 cites W4251513392 @default.
- W4323059932 doi "https://doi.org/10.1109/iccit57492.2022.10055471" @default.
- W4323059932 hasPublicationYear "2022" @default.
- W4323059932 type Work @default.
- W4323059932 citedByCount "1" @default.
- W4323059932 countsByYear W43230599322023 @default.
- W4323059932 crossrefType "proceedings-article" @default.
- W4323059932 hasAuthorship W4323059932A5014734365 @default.
- W4323059932 hasAuthorship W4323059932A5017544654 @default.
- W4323059932 hasAuthorship W4323059932A5029612579 @default.
- W4323059932 hasConcept C110083411 @default.
- W4323059932 hasConcept C11413529 @default.
- W4323059932 hasConcept C117220453 @default.
- W4323059932 hasConcept C119857082 @default.
- W4323059932 hasConcept C12267149 @default.
- W4323059932 hasConcept C148483581 @default.
- W4323059932 hasConcept C154945302 @default.
- W4323059932 hasConcept C169258074 @default.
- W4323059932 hasConcept C2524010 @default.
- W4323059932 hasConcept C33923547 @default.
- W4323059932 hasConcept C41008148 @default.
- W4323059932 hasConcept C45942800 @default.
- W4323059932 hasConcept C52001869 @default.
- W4323059932 hasConcept C84525736 @default.
- W4323059932 hasConceptScore W4323059932C110083411 @default.
- W4323059932 hasConceptScore W4323059932C11413529 @default.
- W4323059932 hasConceptScore W4323059932C117220453 @default.
- W4323059932 hasConceptScore W4323059932C119857082 @default.
- W4323059932 hasConceptScore W4323059932C12267149 @default.
- W4323059932 hasConceptScore W4323059932C148483581 @default.
- W4323059932 hasConceptScore W4323059932C154945302 @default.
- W4323059932 hasConceptScore W4323059932C169258074 @default.
- W4323059932 hasConceptScore W4323059932C2524010 @default.
- W4323059932 hasConceptScore W4323059932C33923547 @default.
- W4323059932 hasConceptScore W4323059932C41008148 @default.
- W4323059932 hasConceptScore W4323059932C45942800 @default.
- W4323059932 hasConceptScore W4323059932C52001869 @default.
- W4323059932 hasConceptScore W4323059932C84525736 @default.
- W4323059932 hasLocation W43230599321 @default.
- W4323059932 hasOpenAccess W4323059932 @default.
- W4323059932 hasPrimaryLocation W43230599321 @default.
- W4323059932 hasRelatedWork W2985924212 @default.
- W4323059932 hasRelatedWork W3034132578 @default.
- W4323059932 hasRelatedWork W3210877509 @default.
- W4323059932 hasRelatedWork W4206256357 @default.
- W4323059932 hasRelatedWork W4213444042 @default.
- W4323059932 hasRelatedWork W4283016678 @default.
- W4323059932 hasRelatedWork W4362588981 @default.
- W4323059932 hasRelatedWork W4372049066 @default.
- W4323059932 hasRelatedWork W4377964522 @default.
- W4323059932 hasRelatedWork W4384345534 @default.
- W4323059932 isParatext "false" @default.
- W4323059932 isRetracted "false" @default.
- W4323059932 workType "article" @default.