Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323059957> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4323059957 abstract "Nowadays, fraud correlated with credit cards became very prevalent since a lot of people use credit cards for buying goods and services. Because of e-commerce and technological advancement, most transactions are happening online, which is increasing the risk of fraudulent transactions and resulting in huge losses financially. Therefore, an effective detection technique, as the quickest prediction option, should be developed to deter fraud from propagating. This paper targeted to develop a deep learning (DL)-based model on SMOTE oversampling technique to predict the fraudulent transactions of credit cards. The system used three popular DL algorithms: Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Long Short-Term Memory Recurrent Neural Network (LSTM RNN), and measured the best performer in terms of evaluation metrics. However, the results confirm that the CNN algorithm outperformed both ANN and LSTM RNN. Additionally, compared to previous studies, our CNN fraud detection program recorded high rates of accuracy in identifying fraudulent activity. The system achieved an accuracy of 99.97%, precision of 99.94%, recall of 99.99%, and F1-Score of 99.96%. This proposed scheme can help to reduce financial loss by detecting credit card scams or frauds globally." @default.
- W4323059957 created "2023-03-05" @default.
- W4323059957 creator A5020811353 @default.
- W4323059957 creator A5035841815 @default.
- W4323059957 creator A5044430394 @default.
- W4323059957 creator A5046340409 @default.
- W4323059957 creator A5060992711 @default.
- W4323059957 creator A5070713807 @default.
- W4323059957 date "2022-12-17" @default.
- W4323059957 modified "2023-09-27" @default.
- W4323059957 title "SMOTE Based Credit Card Fraud Detection Using Convolutional Neural Network" @default.
- W4323059957 cites W2779931100 @default.
- W4323059957 cites W2951007335 @default.
- W4323059957 cites W2958026736 @default.
- W4323059957 cites W2962949934 @default.
- W4323059957 cites W2971446702 @default.
- W4323059957 cites W2985273290 @default.
- W4323059957 cites W2991137082 @default.
- W4323059957 cites W3005048680 @default.
- W4323059957 cites W3017403618 @default.
- W4323059957 cites W3040200154 @default.
- W4323059957 cites W3044412168 @default.
- W4323059957 cites W3048749423 @default.
- W4323059957 cites W3084170373 @default.
- W4323059957 cites W3095164600 @default.
- W4323059957 cites W3100774601 @default.
- W4323059957 cites W3122007073 @default.
- W4323059957 cites W3161799859 @default.
- W4323059957 cites W3172060042 @default.
- W4323059957 doi "https://doi.org/10.1109/iccit57492.2022.10054727" @default.
- W4323059957 hasPublicationYear "2022" @default.
- W4323059957 type Work @default.
- W4323059957 citedByCount "0" @default.
- W4323059957 crossrefType "proceedings-article" @default.
- W4323059957 hasAuthorship W4323059957A5020811353 @default.
- W4323059957 hasAuthorship W4323059957A5035841815 @default.
- W4323059957 hasAuthorship W4323059957A5044430394 @default.
- W4323059957 hasAuthorship W4323059957A5046340409 @default.
- W4323059957 hasAuthorship W4323059957A5060992711 @default.
- W4323059957 hasAuthorship W4323059957A5070713807 @default.
- W4323059957 hasConcept C108583219 @default.
- W4323059957 hasConcept C119857082 @default.
- W4323059957 hasConcept C136764020 @default.
- W4323059957 hasConcept C145097563 @default.
- W4323059957 hasConcept C147168706 @default.
- W4323059957 hasConcept C154945302 @default.
- W4323059957 hasConcept C197323446 @default.
- W4323059957 hasConcept C2776257435 @default.
- W4323059957 hasConcept C2780747020 @default.
- W4323059957 hasConcept C2983355114 @default.
- W4323059957 hasConcept C31258907 @default.
- W4323059957 hasConcept C38652104 @default.
- W4323059957 hasConcept C41008148 @default.
- W4323059957 hasConcept C50644808 @default.
- W4323059957 hasConcept C81363708 @default.
- W4323059957 hasConceptScore W4323059957C108583219 @default.
- W4323059957 hasConceptScore W4323059957C119857082 @default.
- W4323059957 hasConceptScore W4323059957C136764020 @default.
- W4323059957 hasConceptScore W4323059957C145097563 @default.
- W4323059957 hasConceptScore W4323059957C147168706 @default.
- W4323059957 hasConceptScore W4323059957C154945302 @default.
- W4323059957 hasConceptScore W4323059957C197323446 @default.
- W4323059957 hasConceptScore W4323059957C2776257435 @default.
- W4323059957 hasConceptScore W4323059957C2780747020 @default.
- W4323059957 hasConceptScore W4323059957C2983355114 @default.
- W4323059957 hasConceptScore W4323059957C31258907 @default.
- W4323059957 hasConceptScore W4323059957C38652104 @default.
- W4323059957 hasConceptScore W4323059957C41008148 @default.
- W4323059957 hasConceptScore W4323059957C50644808 @default.
- W4323059957 hasConceptScore W4323059957C81363708 @default.
- W4323059957 hasLocation W43230599571 @default.
- W4323059957 hasOpenAccess W4323059957 @default.
- W4323059957 hasPrimaryLocation W43230599571 @default.
- W4323059957 hasRelatedWork W2337926734 @default.
- W4323059957 hasRelatedWork W3148119887 @default.
- W4323059957 hasRelatedWork W4210384905 @default.
- W4323059957 hasRelatedWork W4283520324 @default.
- W4323059957 hasRelatedWork W4311257506 @default.
- W4323059957 hasRelatedWork W4318559683 @default.
- W4323059957 hasRelatedWork W4319994054 @default.
- W4323059957 hasRelatedWork W4361238142 @default.
- W4323059957 hasRelatedWork W4362696845 @default.
- W4323059957 hasRelatedWork W4366224123 @default.
- W4323059957 isParatext "false" @default.
- W4323059957 isRetracted "false" @default.
- W4323059957 workType "article" @default.