Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323263343> ?p ?o ?g. }
- W4323263343 endingPage "105262" @default.
- W4323263343 startingPage "105262" @default.
- W4323263343 abstract "In this study, the qualitative identification and quantitative prediction of antioxidants in edible oil were achieved by the two-dimensional correlation spectroscopy combined with convolutional neural network (CNN). The CNN model obtained classification accuracy of 97.56%, which is significantly higher than that of the partial least squares discriminant analysis (PLS-DA) model. Comparing the performance of the established partial least squares (PLS), CNN, and CNN combined with PLS (CNN_PLS) regression models, it is found that the CNN model has the best quantitative performance among the three regression models, with a root mean square errors for prediction (RMSEP) of 0.0232 and a coefficient of determination for prediction (R2p) of 0.9703. At the same time, it is found that the prediction ability of the CNN_PLS model is affected by the feature extraction ability of CNN models and the output dimension of convolution layers in CNN models. The results demonstrate the potential of the proposed method for the detection of antioxidant in edible oils." @default.
- W4323263343 created "2023-03-06" @default.
- W4323263343 creator A5003459479 @default.
- W4323263343 creator A5017975005 @default.
- W4323263343 creator A5023748379 @default.
- W4323263343 creator A5033640951 @default.
- W4323263343 creator A5058677271 @default.
- W4323263343 creator A5060416973 @default.
- W4323263343 creator A5063525537 @default.
- W4323263343 creator A5091706901 @default.
- W4323263343 date "2023-06-01" @default.
- W4323263343 modified "2023-10-01" @default.
- W4323263343 title "Detection of antioxidants in edible oil by two-dimensional correlation spectroscopy combined with convolutional neural network" @default.
- W4323263343 cites W1600564564 @default.
- W4323263343 cites W1998083712 @default.
- W4323263343 cites W2011011466 @default.
- W4323263343 cites W2021708882 @default.
- W4323263343 cites W2043160455 @default.
- W4323263343 cites W2045250970 @default.
- W4323263343 cites W2053883254 @default.
- W4323263343 cites W2136922672 @default.
- W4323263343 cites W2229708048 @default.
- W4323263343 cites W2292339759 @default.
- W4323263343 cites W2442450066 @default.
- W4323263343 cites W2728634221 @default.
- W4323263343 cites W2739545597 @default.
- W4323263343 cites W2789327756 @default.
- W4323263343 cites W2914149393 @default.
- W4323263343 cites W2919115771 @default.
- W4323263343 cites W2946791964 @default.
- W4323263343 cites W2952266823 @default.
- W4323263343 cites W2960482441 @default.
- W4323263343 cites W2982482221 @default.
- W4323263343 cites W2998987721 @default.
- W4323263343 cites W3029144565 @default.
- W4323263343 cites W3036229468 @default.
- W4323263343 cites W3044996440 @default.
- W4323263343 cites W3088135225 @default.
- W4323263343 cites W3092890642 @default.
- W4323263343 cites W3135364109 @default.
- W4323263343 cites W3135918002 @default.
- W4323263343 cites W3148886754 @default.
- W4323263343 cites W3170479135 @default.
- W4323263343 cites W3187096419 @default.
- W4323263343 cites W3201088167 @default.
- W4323263343 cites W4220940158 @default.
- W4323263343 doi "https://doi.org/10.1016/j.jfca.2023.105262" @default.
- W4323263343 hasPublicationYear "2023" @default.
- W4323263343 type Work @default.
- W4323263343 citedByCount "1" @default.
- W4323263343 countsByYear W43232633432023 @default.
- W4323263343 crossrefType "journal-article" @default.
- W4323263343 hasAuthorship W4323263343A5003459479 @default.
- W4323263343 hasAuthorship W4323263343A5017975005 @default.
- W4323263343 hasAuthorship W4323263343A5023748379 @default.
- W4323263343 hasAuthorship W4323263343A5033640951 @default.
- W4323263343 hasAuthorship W4323263343A5058677271 @default.
- W4323263343 hasAuthorship W4323263343A5060416973 @default.
- W4323263343 hasAuthorship W4323263343A5063525537 @default.
- W4323263343 hasAuthorship W4323263343A5091706901 @default.
- W4323263343 hasConcept C105795698 @default.
- W4323263343 hasConcept C136499087 @default.
- W4323263343 hasConcept C153180895 @default.
- W4323263343 hasConcept C154945302 @default.
- W4323263343 hasConcept C179998833 @default.
- W4323263343 hasConcept C185592680 @default.
- W4323263343 hasConcept C186060115 @default.
- W4323263343 hasConcept C22354355 @default.
- W4323263343 hasConcept C2780092901 @default.
- W4323263343 hasConcept C33923547 @default.
- W4323263343 hasConcept C41008148 @default.
- W4323263343 hasConcept C43617362 @default.
- W4323263343 hasConcept C45347329 @default.
- W4323263343 hasConcept C48921125 @default.
- W4323263343 hasConcept C50644808 @default.
- W4323263343 hasConcept C69738355 @default.
- W4323263343 hasConcept C81363708 @default.
- W4323263343 hasConcept C86803240 @default.
- W4323263343 hasConceptScore W4323263343C105795698 @default.
- W4323263343 hasConceptScore W4323263343C136499087 @default.
- W4323263343 hasConceptScore W4323263343C153180895 @default.
- W4323263343 hasConceptScore W4323263343C154945302 @default.
- W4323263343 hasConceptScore W4323263343C179998833 @default.
- W4323263343 hasConceptScore W4323263343C185592680 @default.
- W4323263343 hasConceptScore W4323263343C186060115 @default.
- W4323263343 hasConceptScore W4323263343C22354355 @default.
- W4323263343 hasConceptScore W4323263343C2780092901 @default.
- W4323263343 hasConceptScore W4323263343C33923547 @default.
- W4323263343 hasConceptScore W4323263343C41008148 @default.
- W4323263343 hasConceptScore W4323263343C43617362 @default.
- W4323263343 hasConceptScore W4323263343C45347329 @default.
- W4323263343 hasConceptScore W4323263343C48921125 @default.
- W4323263343 hasConceptScore W4323263343C50644808 @default.
- W4323263343 hasConceptScore W4323263343C69738355 @default.
- W4323263343 hasConceptScore W4323263343C81363708 @default.
- W4323263343 hasConceptScore W4323263343C86803240 @default.
- W4323263343 hasLocation W43232633431 @default.
- W4323263343 hasOpenAccess W4323263343 @default.