Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323276543> ?p ?o ?g. }
- W4323276543 endingPage "116875" @default.
- W4323276543 startingPage "116875" @default.
- W4323276543 abstract "To gain an insight into the damage mechanism in carbon fiber reinforced polymer, a real-time analytical approach for damage mode identification of composite based on machine learning and acoustic emission is proposed. Firstly, waveform features are extracted from the acoustic emission signals with low information entropy through wavelet packet transform, where the high-dimensional feature vectors represent the main features of the reconstructed signals in the frequency domain. Combined with the autoencoder and k-means ++ algorithm, a waveform-based clustering model is constructed to reveal the relevance between acoustic emission signals and damage modes. Finally, the damage mode recognition of different types of composite laminates is achieved by the developed softmax layer classifier. The identification and the quantitative analysis of damage modes for prefabricated defects specimens demonstrate the robustness of the method. The method is effective and feasible for real-time monitoring of the damage evolution process of carbon fiber reinforced composite components." @default.
- W4323276543 created "2023-03-06" @default.
- W4323276543 creator A5022273385 @default.
- W4323276543 creator A5027098169 @default.
- W4323276543 creator A5057117256 @default.
- W4323276543 creator A5059872394 @default.
- W4323276543 creator A5075877965 @default.
- W4323276543 date "2023-05-01" @default.
- W4323276543 modified "2023-10-02" @default.
- W4323276543 title "A waveform-based clustering and machine learning method for damage mode identification in CFRP laminates" @default.
- W4323276543 cites W1982366717 @default.
- W4323276543 cites W1995875735 @default.
- W4323276543 cites W2001130098 @default.
- W4323276543 cites W2029760124 @default.
- W4323276543 cites W2065415909 @default.
- W4323276543 cites W2147596314 @default.
- W4323276543 cites W2157665330 @default.
- W4323276543 cites W2595136813 @default.
- W4323276543 cites W2771296190 @default.
- W4323276543 cites W2804779047 @default.
- W4323276543 cites W2866625953 @default.
- W4323276543 cites W2886523898 @default.
- W4323276543 cites W2886905448 @default.
- W4323276543 cites W2895677540 @default.
- W4323276543 cites W2905819506 @default.
- W4323276543 cites W2908320449 @default.
- W4323276543 cites W2919829647 @default.
- W4323276543 cites W2924618413 @default.
- W4323276543 cites W2940812282 @default.
- W4323276543 cites W2941147690 @default.
- W4323276543 cites W2987309541 @default.
- W4323276543 cites W2997562538 @default.
- W4323276543 cites W3020789896 @default.
- W4323276543 cites W3047892747 @default.
- W4323276543 cites W3082946986 @default.
- W4323276543 cites W3087323963 @default.
- W4323276543 cites W3145174082 @default.
- W4323276543 cites W3174802928 @default.
- W4323276543 cites W3175638103 @default.
- W4323276543 cites W3176376239 @default.
- W4323276543 cites W3182061388 @default.
- W4323276543 cites W3182069830 @default.
- W4323276543 cites W3191891057 @default.
- W4323276543 cites W3202136510 @default.
- W4323276543 cites W3202738506 @default.
- W4323276543 cites W4213238382 @default.
- W4323276543 cites W4223531618 @default.
- W4323276543 cites W4224951253 @default.
- W4323276543 cites W4226107918 @default.
- W4323276543 doi "https://doi.org/10.1016/j.compstruct.2023.116875" @default.
- W4323276543 hasPublicationYear "2023" @default.
- W4323276543 type Work @default.
- W4323276543 citedByCount "2" @default.
- W4323276543 countsByYear W43232765432023 @default.
- W4323276543 crossrefType "journal-article" @default.
- W4323276543 hasAuthorship W4323276543A5022273385 @default.
- W4323276543 hasAuthorship W4323276543A5027098169 @default.
- W4323276543 hasAuthorship W4323276543A5057117256 @default.
- W4323276543 hasAuthorship W4323276543A5059872394 @default.
- W4323276543 hasAuthorship W4323276543A5075877965 @default.
- W4323276543 hasConcept C101738243 @default.
- W4323276543 hasConcept C103824480 @default.
- W4323276543 hasConcept C104317684 @default.
- W4323276543 hasConcept C104779481 @default.
- W4323276543 hasConcept C11413529 @default.
- W4323276543 hasConcept C121332964 @default.
- W4323276543 hasConcept C145922259 @default.
- W4323276543 hasConcept C153180895 @default.
- W4323276543 hasConcept C154945302 @default.
- W4323276543 hasConcept C159985019 @default.
- W4323276543 hasConcept C174598085 @default.
- W4323276543 hasConcept C185592680 @default.
- W4323276543 hasConcept C188441871 @default.
- W4323276543 hasConcept C192562407 @default.
- W4323276543 hasConcept C197424946 @default.
- W4323276543 hasConcept C24890656 @default.
- W4323276543 hasConcept C2777178879 @default.
- W4323276543 hasConcept C31972630 @default.
- W4323276543 hasConcept C41008148 @default.
- W4323276543 hasConcept C50644808 @default.
- W4323276543 hasConcept C554190296 @default.
- W4323276543 hasConcept C55493867 @default.
- W4323276543 hasConcept C63479239 @default.
- W4323276543 hasConcept C73555534 @default.
- W4323276543 hasConcept C76155785 @default.
- W4323276543 hasConceptScore W4323276543C101738243 @default.
- W4323276543 hasConceptScore W4323276543C103824480 @default.
- W4323276543 hasConceptScore W4323276543C104317684 @default.
- W4323276543 hasConceptScore W4323276543C104779481 @default.
- W4323276543 hasConceptScore W4323276543C11413529 @default.
- W4323276543 hasConceptScore W4323276543C121332964 @default.
- W4323276543 hasConceptScore W4323276543C145922259 @default.
- W4323276543 hasConceptScore W4323276543C153180895 @default.
- W4323276543 hasConceptScore W4323276543C154945302 @default.
- W4323276543 hasConceptScore W4323276543C159985019 @default.
- W4323276543 hasConceptScore W4323276543C174598085 @default.
- W4323276543 hasConceptScore W4323276543C185592680 @default.
- W4323276543 hasConceptScore W4323276543C188441871 @default.