Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323285029> ?p ?o ?g. }
- W4323285029 endingPage "1159" @default.
- W4323285029 startingPage "1146" @default.
- W4323285029 abstract "We report here a systematic study of the electrical properties of a large number of metal/n-type GaAs (Cr, Mn, Sn, Ni, Al, Pd, Cu, Ag, Au) diodes. Diodes were fabricated on cleaved GaAs(110) surfaces under ultrahigh-vacuum conditions with in situ metal deposition. Using current-voltage (I-V) and capacitance-voltage (C-V) measuring techniques, we were able to obtain very reliable and consistent determinations of the barrier height ${ensuremath{varphi}}_{b}$ and ideality factor n. All of the metal-semiconductor systems formed on lightly doped (5ifmmodetimeselsetexttimesfi{}${10}^{16}$/${mathrm{cm}}^{3}$) n-type GaAs substrates were characterized by near-unity (1.05) ideality factors. A decrease in the effective I-V barrier height, an increase in the ideality factor in forward bias and a strong voltage dependence on the thermionic emission currents in reverse bias were found for diodes formed on the more heavily doped samples.These changes are essentially metal independent, but depend strongly on the doping of the substrate. The characterization (and elimination in some cases) of peripheral leakage currents from the thermionic emission current is found to be essential in obtaining consistent results in our work and in reinterpreting some of the prior work in the literature. The dominant leakage current flows through a small area, low barrier at the periphery of the device and can be eliminated by mesa etching. The consistent and reproducible barrier-height determinations reported in this study, when combined with the results of recent surface-sensitive studies, are a particularly critical test of models of Schottky-barrier formation.The barrier heights measured from the electrical characteristics of thick-metal-film diodes were found to be essentially identical to those reported during the initial stages (submonolayer to several monolayers of metal) of Schottky-barrier formation by photoemission spectroscopy. This agreement indicates that the physical mechanism responsible for Fermi-level pinning in the thick-metal Schottky diodes is first established at submonolayer to several-monolayer coverages of adatoms and an atomic scale model is therefore necessary to account for the available experimental data. No strong correlation between the barrier heights and the work function of the metal or chemistry at the interface was found. Also, diodes formed on clean GaAs(110) surfaces were found to have essentially identical barrier heights to those formed on clean GaAs(100) surfaces and on contaminated (i.e., chemically prepared) GaAs(100) and GaAs(110) surfaces. Several currently popular models concerned with the physical mechanism responsible for the formation of the Schottky barrier are discussed, and the unified defect model is found to be most consistent with the experimental data." @default.
- W4323285029 created "2023-03-07" @default.
- W4323285029 creator A5022145622 @default.
- W4323285029 creator A5048848576 @default.
- W4323285029 creator A5053792110 @default.
- W4323285029 creator A5064896924 @default.
- W4323285029 creator A5080109854 @default.
- W4323285029 date "1986-01-15" @default.
- W4323285029 modified "2023-10-10" @default.
- W4323285029 title "Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces" @default.
- W4323285029 cites W192016692 @default.
- W4323285029 cites W1966191183 @default.
- W4323285029 cites W1969056507 @default.
- W4323285029 cites W1969378850 @default.
- W4323285029 cites W1974643526 @default.
- W4323285029 cites W1978609770 @default.
- W4323285029 cites W1983211878 @default.
- W4323285029 cites W1985311164 @default.
- W4323285029 cites W1987237639 @default.
- W4323285029 cites W1987451118 @default.
- W4323285029 cites W1990188864 @default.
- W4323285029 cites W1991584756 @default.
- W4323285029 cites W1992266037 @default.
- W4323285029 cites W2000484708 @default.
- W4323285029 cites W2001788404 @default.
- W4323285029 cites W2003404784 @default.
- W4323285029 cites W2007566610 @default.
- W4323285029 cites W2007778215 @default.
- W4323285029 cites W2009886777 @default.
- W4323285029 cites W2011829023 @default.
- W4323285029 cites W2013289950 @default.
- W4323285029 cites W2015001133 @default.
- W4323285029 cites W2015445303 @default.
- W4323285029 cites W2015633725 @default.
- W4323285029 cites W2016665574 @default.
- W4323285029 cites W2016819363 @default.
- W4323285029 cites W2018374841 @default.
- W4323285029 cites W2018446090 @default.
- W4323285029 cites W2019581400 @default.
- W4323285029 cites W2020591820 @default.
- W4323285029 cites W2020646319 @default.
- W4323285029 cites W2029186273 @default.
- W4323285029 cites W2031979215 @default.
- W4323285029 cites W2038018344 @default.
- W4323285029 cites W2044055546 @default.
- W4323285029 cites W2044440744 @default.
- W4323285029 cites W2047017387 @default.
- W4323285029 cites W2048196033 @default.
- W4323285029 cites W2048967628 @default.
- W4323285029 cites W2049929174 @default.
- W4323285029 cites W2052356789 @default.
- W4323285029 cites W2052604782 @default.
- W4323285029 cites W2055309078 @default.
- W4323285029 cites W2057190878 @default.
- W4323285029 cites W2060378802 @default.
- W4323285029 cites W2061700313 @default.
- W4323285029 cites W2062744267 @default.
- W4323285029 cites W2066282868 @default.
- W4323285029 cites W2068810779 @default.
- W4323285029 cites W2074821454 @default.
- W4323285029 cites W2079573301 @default.
- W4323285029 cites W2084194509 @default.
- W4323285029 cites W2089334184 @default.
- W4323285029 cites W2092019974 @default.
- W4323285029 cites W2093222963 @default.
- W4323285029 cites W2104723496 @default.
- W4323285029 cites W2112673384 @default.
- W4323285029 cites W3189290307 @default.
- W4323285029 doi "https://doi.org/10.1103/physrevb.33.1146" @default.
- W4323285029 hasPublicationYear "1986" @default.
- W4323285029 type Work @default.
- W4323285029 citedByCount "120" @default.
- W4323285029 countsByYear W43232850292012 @default.
- W4323285029 countsByYear W43232850292014 @default.
- W4323285029 countsByYear W43232850292015 @default.
- W4323285029 countsByYear W43232850292016 @default.
- W4323285029 countsByYear W43232850292019 @default.
- W4323285029 countsByYear W43232850292021 @default.
- W4323285029 countsByYear W43232850292022 @default.
- W4323285029 countsByYear W43232850292023 @default.
- W4323285029 crossrefType "journal-article" @default.
- W4323285029 hasAuthorship W4323285029A5022145622 @default.
- W4323285029 hasAuthorship W4323285029A5048848576 @default.
- W4323285029 hasAuthorship W4323285029A5053792110 @default.
- W4323285029 hasAuthorship W4323285029A5064896924 @default.
- W4323285029 hasAuthorship W4323285029A5080109854 @default.
- W4323285029 hasConcept C108225325 @default.
- W4323285029 hasConcept C111368507 @default.
- W4323285029 hasConcept C113196181 @default.
- W4323285029 hasConcept C119599485 @default.
- W4323285029 hasConcept C121332964 @default.
- W4323285029 hasConcept C127313418 @default.
- W4323285029 hasConcept C127413603 @default.
- W4323285029 hasConcept C139719470 @default.
- W4323285029 hasConcept C143979616 @default.
- W4323285029 hasConcept C147120987 @default.
- W4323285029 hasConcept C16115445 @default.
- W4323285029 hasConcept C162324750 @default.