Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323308261> ?p ?o ?g. }
- W4323308261 endingPage "108599" @default.
- W4323308261 startingPage "108599" @default.
- W4323308261 abstract "Weedy rice is one of the most problematic weeds in rice-growing regions, particularly in Southeast Asia. Unlike other types of weeds, it is extremely difficult to distinguish weedy rice from cultivated rice directly from paddy seeds as they exhibit common morphological features. As such weed management can be a difficult, time-consuming, and inaccurate process that is often carried out manually. This study offers a novel classification approach based on an artificial neural network (ANN), utilizing self-organizing maps (SOMs), to directly discriminate weedy rice using the near-infrared (NIR) hyperspectral imaging (HSI) technique. The physical attributes, thermal behavior, and chemical profiles of the weedy and cultivated rice were thoroughly investigated by a range of analytical techniques, including optical microscopy, scanning electron microscopy, thermogravimetric analysis, and direct analysis in real-time mass spectrometry (DART-MS). For direct sample analysis by HSI, a global self-organizing map was generated with optimized parameters (scaling value and map size). The color indices (Red, Green, Blue values) of the sample image were defined to obtain a color ratio that can be used to classify unknown samples. The optimal threshold for classification was carefully determined using a receiver operating characteristic (ROC) curve. Performance metrics (sensitivity, specificity, precision, accuracy, and misclassification error) were used to evaluate the performance of the model. Classification accuracies of 98% (Weedy vs PL2) and 88% (Weedy vs RD49) were obtained with balanced sensitivity and specificity. The classification was assessed from the whole sample image, which was completely independent of the selected region of interest. As far as we know, this is the first instance where SOMs have been utilized to appraise seed quality by means of authentic HSI images." @default.
- W4323308261 created "2023-03-07" @default.
- W4323308261 creator A5025899054 @default.
- W4323308261 creator A5034405883 @default.
- W4323308261 creator A5040114105 @default.
- W4323308261 creator A5051599509 @default.
- W4323308261 creator A5056002165 @default.
- W4323308261 creator A5080700317 @default.
- W4323308261 date "2023-07-01" @default.
- W4323308261 modified "2023-09-25" @default.
- W4323308261 title "Mapping hyperspectral NIR images using supervised self-organizing maps: Discrimination of weedy rice seeds" @default.
- W4323308261 cites W1553898020 @default.
- W4323308261 cites W1970457251 @default.
- W4323308261 cites W1990517717 @default.
- W4323308261 cites W2016016303 @default.
- W4323308261 cites W2031180492 @default.
- W4323308261 cites W2078780761 @default.
- W4323308261 cites W2081668384 @default.
- W4323308261 cites W2089752948 @default.
- W4323308261 cites W2109705076 @default.
- W4323308261 cites W2152745184 @default.
- W4323308261 cites W2162976785 @default.
- W4323308261 cites W2170304010 @default.
- W4323308261 cites W2228221367 @default.
- W4323308261 cites W2596459716 @default.
- W4323308261 cites W2608037147 @default.
- W4323308261 cites W2758039131 @default.
- W4323308261 cites W2789152424 @default.
- W4323308261 cites W2792647011 @default.
- W4323308261 cites W2843415492 @default.
- W4323308261 cites W2892359519 @default.
- W4323308261 cites W2906231495 @default.
- W4323308261 cites W2917883159 @default.
- W4323308261 cites W2924639319 @default.
- W4323308261 cites W2965405319 @default.
- W4323308261 cites W2987137405 @default.
- W4323308261 cites W2999400086 @default.
- W4323308261 cites W3005998069 @default.
- W4323308261 cites W3042544447 @default.
- W4323308261 cites W3043568735 @default.
- W4323308261 cites W3097962559 @default.
- W4323308261 cites W3110598036 @default.
- W4323308261 cites W3209916490 @default.
- W4323308261 cites W4207064022 @default.
- W4323308261 cites W65738273 @default.
- W4323308261 cites W938155327 @default.
- W4323308261 doi "https://doi.org/10.1016/j.microc.2023.108599" @default.
- W4323308261 hasPublicationYear "2023" @default.
- W4323308261 type Work @default.
- W4323308261 citedByCount "0" @default.
- W4323308261 crossrefType "journal-article" @default.
- W4323308261 hasAuthorship W4323308261A5025899054 @default.
- W4323308261 hasAuthorship W4323308261A5034405883 @default.
- W4323308261 hasAuthorship W4323308261A5040114105 @default.
- W4323308261 hasAuthorship W4323308261A5051599509 @default.
- W4323308261 hasAuthorship W4323308261A5056002165 @default.
- W4323308261 hasAuthorship W4323308261A5080700317 @default.
- W4323308261 hasConcept C104317684 @default.
- W4323308261 hasConcept C121332964 @default.
- W4323308261 hasConcept C127413603 @default.
- W4323308261 hasConcept C153180895 @default.
- W4323308261 hasConcept C154945302 @default.
- W4323308261 hasConcept C159078339 @default.
- W4323308261 hasConcept C186060115 @default.
- W4323308261 hasConcept C198531522 @default.
- W4323308261 hasConcept C21200559 @default.
- W4323308261 hasConcept C24326235 @default.
- W4323308261 hasConcept C2775891814 @default.
- W4323308261 hasConcept C2778543611 @default.
- W4323308261 hasConcept C2779167006 @default.
- W4323308261 hasConcept C33923547 @default.
- W4323308261 hasConcept C41008148 @default.
- W4323308261 hasConcept C50644808 @default.
- W4323308261 hasConcept C55493867 @default.
- W4323308261 hasConcept C6557445 @default.
- W4323308261 hasConcept C86803240 @default.
- W4323308261 hasConcept C97355855 @default.
- W4323308261 hasConceptScore W4323308261C104317684 @default.
- W4323308261 hasConceptScore W4323308261C121332964 @default.
- W4323308261 hasConceptScore W4323308261C127413603 @default.
- W4323308261 hasConceptScore W4323308261C153180895 @default.
- W4323308261 hasConceptScore W4323308261C154945302 @default.
- W4323308261 hasConceptScore W4323308261C159078339 @default.
- W4323308261 hasConceptScore W4323308261C186060115 @default.
- W4323308261 hasConceptScore W4323308261C198531522 @default.
- W4323308261 hasConceptScore W4323308261C21200559 @default.
- W4323308261 hasConceptScore W4323308261C24326235 @default.
- W4323308261 hasConceptScore W4323308261C2775891814 @default.
- W4323308261 hasConceptScore W4323308261C2778543611 @default.
- W4323308261 hasConceptScore W4323308261C2779167006 @default.
- W4323308261 hasConceptScore W4323308261C33923547 @default.
- W4323308261 hasConceptScore W4323308261C41008148 @default.
- W4323308261 hasConceptScore W4323308261C50644808 @default.
- W4323308261 hasConceptScore W4323308261C55493867 @default.
- W4323308261 hasConceptScore W4323308261C6557445 @default.
- W4323308261 hasConceptScore W4323308261C86803240 @default.
- W4323308261 hasConceptScore W4323308261C97355855 @default.
- W4323308261 hasLocation W43233082611 @default.